Ответ:
Объяснение:
x^4+x^2-5=0\\x^2=t=>t^2+t-5=0\\D=21\\t=\frac{-1+\sqrt{21} }{2} \\t=\frac{-1-\sqrt{21} }{2} \\x=\frac{\sqrt{-2+2\sqrt{21} } }{2} \\x=-\frac{\sqrt{-2+2\sqrt{21} } }{2}" alt="(x^2-2)^2+5(x^2-3)+6=0<=>x^4+x^2-5=0\\x^2=t=>t^2+t-5=0\\D=21\\t=\frac{-1+\sqrt{21} }{2} \\t=\frac{-1-\sqrt{21} }{2} \\x=\frac{\sqrt{-2+2\sqrt{21} } }{2} \\x=-\frac{\sqrt{-2+2\sqrt{21} } }{2}" align="absmiddle" class="latex-formula">