Ответ: x₁=0 x₂=4.
Объяснение:
((x²-4x+5)/(x²-4x+4))-((x²-4x+3)/(x²-4x+6))=3/4
Пусть x²-4x+4=(x-2)²=t>0 ⇒
((t+1)/t)-(t-1)/(t+2)=3/4
((t+1)*(t+2)-t*(t-1))/(t*(t+2))=3/4
(t²+3t+2-t²+t)/(t²+2t)=3/4
(4t+2)/(t²+2t)=3/4
4*(4t+2)=3*(t²+2t)
16t+8=3t²+6t
3t²-10t-8=0 D=196 √D=14
t₁=x²-4x+4=-2/3 ∉
t₂=x²-4x+4=4
x²-4x=0
x*(x-4)=0
x₁=0 x₂=4.