Решить уравнение 121^x-7*11^x=5*11^x-11 0.5^(x2+x-3.5)=2корень 2

0 голосов
77 просмотров

Решить уравнение 121^x-7*11^x=5*11^x-11 0.5^(x2+x-3.5)=2корень 2


Алгебра (345 баллов) | 77 просмотров
Дан 1 ответ
0 голосов

Ответ:

Объяснение:

image121^x-7*11^x-5*11^x+11=0<=>\\<=>121^x-12*11^x+11=0<=>(11^x-1)(11^x-11)=0=>x=0;x=1\\2)0,5^{x^2+x-3,5}=2\sqrt{2}<=>2^{-x^2-x+3,5} =2^{1,5}<=>x^2+x-2=0=>\\=>x=-2;x=1" alt="1)121^x-7*11^x=5*11^x-11<=>121^x-7*11^x-5*11^x+11=0<=>\\<=>121^x-12*11^x+11=0<=>(11^x-1)(11^x-11)=0=>x=0;x=1\\2)0,5^{x^2+x-3,5}=2\sqrt{2}<=>2^{-x^2-x+3,5} =2^{1,5}<=>x^2+x-2=0=>\\=>x=-2;x=1" align="absmiddle" class="latex-formula">

(1.3k баллов)