Даны вершины пирамиды: А(21;0;0), В(42;0;0), С(21;-21;0), D(21;21;21).
Как видим, точки А, В и С находятся все в одной плоскости хОу.
Поэтому ответ на вопрос высоты ДД1 решается легко: эта высота равна координате точки Д по оси Oz,то есть 21.
Для определения высоты СС1 надо определить объём пирамиды и площадь грани АВД.
1. Находим координаты векторов.
Вектор АВ={xB-xA, yB-yA, zB-zA} 2100
Вектор АC={xC-xA, yC-yA, zC-zA} 0-210
Вектор АD={xD-xA, yD-yA, zD-zA} 02121.
Объем пирамиды равен смешанному произведению векторов:
(AB{x1, y1, z1} ; AC{x2, y2, z2} ; AD{x3, y3, z3})= x3·a1+y3·a2+z3·a3.
Произведение векторов
a × b = {aybz - azby; azbx - axbz; axby - aybx}.
Подставив значения координат векторов, получаем:
2. Площади граней
a1a2a3 S =
ABC[AB ; AC]=00-441 220,5
АВD[AB ; AD]=0441 441 311,8341
3. Объем пирамиды
xyz
AB*AC 00-441
AD 021 21
Произвед00-9261
V = (1/6) *9261 =1543,5.
Отсюда находим высоту СС1.
СС1 = 3V/S(ABD) = (3*9261/6)/311,8341 = 14,8492.