Найдем частные производные:
![\displaystyle\Large z=\sin{x}+\sin{y}+\sin{(x+y)}\\\\{\partial z\over\partial x}=\cos{x}+\cos{(x+y)},\;{\partial z\over\partial y}=\cos{y}+\cos{(x+y)}\\\begin{cases} &\cos{x}+\cos{(x+y)}=0\\ &\cos{y}+\cos{(x+y)}=0 \end{cases}\\ \cos{x}=\cos{y}\Rightarrow x=y\\\begin{cases} & \cos{x}+\cos{(2x)}=0 \\ & \cos{y}+\cos{(2y)}=0 \end{cases}\\ \cos{x}+\cos^2{x}-\sin^2{x}=0\\ \cos{x}+\cos^2{x}-1+\cos^2{x}=0\\ 2\cos^2{x}+\cos{x}-1=0\\ \cos{x}=t,\; t\in[-1;1]\\2t^2+t-1=0\\D=1+8=9\\t_1={-1+3\over4}={1\over2}\\t_2={-1-3\over4}=-1\\ \cos{x}={1\over2}\\ x_{1,2}=\pm{\pi\over3}+2\pi n, n\in\mathbb{Z}\\ \cos{x}=-1\\ x_{3}=\pi+2\pi k, \; k\in\mathbb{Z}\\ \cos{y}+\cos^2{y}-\sin^2{y}=0\\ \cos{y}+\cos^2{y}-1+\cos^2{y}=0\\ 2\cos^2{y}+\cos{y}-1=0\\ \cos{y}=t,\; t\in[-1;1]\\ 2t^2+t-1=0\\ D=1+8=9\\ t_1={-1+3\over4}={1\over2}\\ t_2={-1-3\over4}=-1\\ \cos{y}={1\over2}\\ y_{1,2}=\pm{\pi\over3}+2\pi m, m\in\mathbb{Z}\\ \cos{y}=-1\\ y_{3}=\pi+2\pi c, \; c\in\mathbb{Z}\\ \displaystyle\Large z=\sin{x}+\sin{y}+\sin{(x+y)}\\\\{\partial z\over\partial x}=\cos{x}+\cos{(x+y)},\;{\partial z\over\partial y}=\cos{y}+\cos{(x+y)}\\\begin{cases} &\cos{x}+\cos{(x+y)}=0\\ &\cos{y}+\cos{(x+y)}=0 \end{cases}\\ \cos{x}=\cos{y}\Rightarrow x=y\\\begin{cases} & \cos{x}+\cos{(2x)}=0 \\ & \cos{y}+\cos{(2y)}=0 \end{cases}\\ \cos{x}+\cos^2{x}-\sin^2{x}=0\\ \cos{x}+\cos^2{x}-1+\cos^2{x}=0\\ 2\cos^2{x}+\cos{x}-1=0\\ \cos{x}=t,\; t\in[-1;1]\\2t^2+t-1=0\\D=1+8=9\\t_1={-1+3\over4}={1\over2}\\t_2={-1-3\over4}=-1\\ \cos{x}={1\over2}\\ x_{1,2}=\pm{\pi\over3}+2\pi n, n\in\mathbb{Z}\\ \cos{x}=-1\\ x_{3}=\pi+2\pi k, \; k\in\mathbb{Z}\\ \cos{y}+\cos^2{y}-\sin^2{y}=0\\ \cos{y}+\cos^2{y}-1+\cos^2{y}=0\\ 2\cos^2{y}+\cos{y}-1=0\\ \cos{y}=t,\; t\in[-1;1]\\ 2t^2+t-1=0\\ D=1+8=9\\ t_1={-1+3\over4}={1\over2}\\ t_2={-1-3\over4}=-1\\ \cos{y}={1\over2}\\ y_{1,2}=\pm{\pi\over3}+2\pi m, m\in\mathbb{Z}\\ \cos{y}=-1\\ y_{3}=\pi+2\pi c, \; c\in\mathbb{Z}\\](https://tex.z-dn.net/?f=%5Cdisplaystyle%5CLarge%20z%3D%5Csin%7Bx%7D%2B%5Csin%7By%7D%2B%5Csin%7B%28x%2By%29%7D%5C%5C%5C%5C%7B%5Cpartial%20z%5Cover%5Cpartial%20x%7D%3D%5Ccos%7Bx%7D%2B%5Ccos%7B%28x%2By%29%7D%2C%5C%3B%7B%5Cpartial%20z%5Cover%5Cpartial%20y%7D%3D%5Ccos%7By%7D%2B%5Ccos%7B%28x%2By%29%7D%5C%5C%5Cbegin%7Bcases%7D%20%26%5Ccos%7Bx%7D%2B%5Ccos%7B%28x%2By%29%7D%3D0%5C%5C%20%26%5Ccos%7By%7D%2B%5Ccos%7B%28x%2By%29%7D%3D0%20%5Cend%7Bcases%7D%5C%5C%20%5Ccos%7Bx%7D%3D%5Ccos%7By%7D%5CRightarrow%20x%3Dy%5C%5C%5Cbegin%7Bcases%7D%20%26%20%5Ccos%7Bx%7D%2B%5Ccos%7B%282x%29%7D%3D0%20%5C%5C%20%26%20%5Ccos%7By%7D%2B%5Ccos%7B%282y%29%7D%3D0%20%5Cend%7Bcases%7D%5C%5C%20%5Ccos%7Bx%7D%2B%5Ccos%5E2%7Bx%7D-%5Csin%5E2%7Bx%7D%3D0%5C%5C%20%5Ccos%7Bx%7D%2B%5Ccos%5E2%7Bx%7D-1%2B%5Ccos%5E2%7Bx%7D%3D0%5C%5C%202%5Ccos%5E2%7Bx%7D%2B%5Ccos%7Bx%7D-1%3D0%5C%5C%20%5Ccos%7Bx%7D%3Dt%2C%5C%3B%20t%5Cin%5B-1%3B1%5D%5C%5C2t%5E2%2Bt-1%3D0%5C%5CD%3D1%2B8%3D9%5C%5Ct_1%3D%7B-1%2B3%5Cover4%7D%3D%7B1%5Cover2%7D%5C%5Ct_2%3D%7B-1-3%5Cover4%7D%3D-1%5C%5C%20%5Ccos%7Bx%7D%3D%7B1%5Cover2%7D%5C%5C%20x_%7B1%2C2%7D%3D%5Cpm%7B%5Cpi%5Cover3%7D%2B2%5Cpi%20n%2C%20n%5Cin%5Cmathbb%7BZ%7D%5C%5C%20%5Ccos%7Bx%7D%3D-1%5C%5C%20x_%7B3%7D%3D%5Cpi%2B2%5Cpi%20k%2C%20%5C%3B%20k%5Cin%5Cmathbb%7BZ%7D%5C%5C%20%5Ccos%7By%7D%2B%5Ccos%5E2%7By%7D-%5Csin%5E2%7By%7D%3D0%5C%5C%20%5Ccos%7By%7D%2B%5Ccos%5E2%7By%7D-1%2B%5Ccos%5E2%7By%7D%3D0%5C%5C%202%5Ccos%5E2%7By%7D%2B%5Ccos%7By%7D-1%3D0%5C%5C%20%5Ccos%7By%7D%3Dt%2C%5C%3B%20t%5Cin%5B-1%3B1%5D%5C%5C%202t%5E2%2Bt-1%3D0%5C%5C%20D%3D1%2B8%3D9%5C%5C%20t_1%3D%7B-1%2B3%5Cover4%7D%3D%7B1%5Cover2%7D%5C%5C%20t_2%3D%7B-1-3%5Cover4%7D%3D-1%5C%5C%20%5Ccos%7By%7D%3D%7B1%5Cover2%7D%5C%5C%20y_%7B1%2C2%7D%3D%5Cpm%7B%5Cpi%5Cover3%7D%2B2%5Cpi%20m%2C%20m%5Cin%5Cmathbb%7BZ%7D%5C%5C%20%5Ccos%7By%7D%3D-1%5C%5C%20y_%7B3%7D%3D%5Cpi%2B2%5Cpi%20c%2C%20%5C%3B%20c%5Cin%5Cmathbb%7BZ%7D%5C%5C)
Проверим принадлежность точек к нашей области:
![\displaystyle D: \begin{cases} & 0\leq{x}\leq{\pi\over2}\\ &0\leq{y}\leq{\pi\over2} \end{cases}\\\\ x_1={\pi\over3}+2\pi n,\; n\in\mathbb{Z},\; y_1={\pi\over3}+2\pi m,\; m\in\mathbb{Z}\\ x_2=-{\pi\over3}+2\pi l,\; l\in\mathbb{Z},\; y_2=-{\pi\over3}+2\pi w,\; w\in\mathbb{Z}\\ x_3=\pi+2\pi k,\; k\in\mathbb{Z},\; y_3=\pi+2\pi c,\; c\in\mathbb{Z} \\ 0\leq{\pi\over3}+2\pi n\leq{\pi\over2},\; n\in\mathbb{Z}\\ -{\pi\over3}\leq2\pi n\leq{\pi\over2}-{\pi\over3},\; n\in\mathbb{Z}\\ \left(-{1\over6}\leq n\leq{1\over12},\; n\in\mathbb{Z}\right)\Rightarrow\mathbf{n=0}\Rightarrow M_{0}\left({\pi\over3};{\pi\over3}\right)\\ 0\leq-{\pi\over3}+2\pi l\leq{\pi\over2},\; l\in\mathbb{Z}\\ \left({1\over6}\leq l\leq{5\over12},\; l\in\mathbb{Z}\right)\Rightarrow\mathbf{l\notin\mathbb{Z}}\\ 0\leq\pi+2\pi k\leq{\pi\over2},\; k\in\mathbb{Z}\\ \left(-{1\over2}\leq k\leq-{1\over8},\; k\in\mathbb{Z}\right)\Rightarrow\mathbf{k\notin\mathbb{Z}}\\ \displaystyle D: \begin{cases} & 0\leq{x}\leq{\pi\over2}\\ &0\leq{y}\leq{\pi\over2} \end{cases}\\\\ x_1={\pi\over3}+2\pi n,\; n\in\mathbb{Z},\; y_1={\pi\over3}+2\pi m,\; m\in\mathbb{Z}\\ x_2=-{\pi\over3}+2\pi l,\; l\in\mathbb{Z},\; y_2=-{\pi\over3}+2\pi w,\; w\in\mathbb{Z}\\ x_3=\pi+2\pi k,\; k\in\mathbb{Z},\; y_3=\pi+2\pi c,\; c\in\mathbb{Z} \\ 0\leq{\pi\over3}+2\pi n\leq{\pi\over2},\; n\in\mathbb{Z}\\ -{\pi\over3}\leq2\pi n\leq{\pi\over2}-{\pi\over3},\; n\in\mathbb{Z}\\ \left(-{1\over6}\leq n\leq{1\over12},\; n\in\mathbb{Z}\right)\Rightarrow\mathbf{n=0}\Rightarrow M_{0}\left({\pi\over3};{\pi\over3}\right)\\ 0\leq-{\pi\over3}+2\pi l\leq{\pi\over2},\; l\in\mathbb{Z}\\ \left({1\over6}\leq l\leq{5\over12},\; l\in\mathbb{Z}\right)\Rightarrow\mathbf{l\notin\mathbb{Z}}\\ 0\leq\pi+2\pi k\leq{\pi\over2},\; k\in\mathbb{Z}\\ \left(-{1\over2}\leq k\leq-{1\over8},\; k\in\mathbb{Z}\right)\Rightarrow\mathbf{k\notin\mathbb{Z}}\\](https://tex.z-dn.net/?f=%5Cdisplaystyle%20D%3A%20%5Cbegin%7Bcases%7D%20%26%200%5Cleq%7Bx%7D%5Cleq%7B%5Cpi%5Cover2%7D%5C%5C%20%260%5Cleq%7By%7D%5Cleq%7B%5Cpi%5Cover2%7D%20%5Cend%7Bcases%7D%5C%5C%5C%5C%20x_1%3D%7B%5Cpi%5Cover3%7D%2B2%5Cpi%20n%2C%5C%3B%20n%5Cin%5Cmathbb%7BZ%7D%2C%5C%3B%20y_1%3D%7B%5Cpi%5Cover3%7D%2B2%5Cpi%20m%2C%5C%3B%20m%5Cin%5Cmathbb%7BZ%7D%5C%5C%20x_2%3D-%7B%5Cpi%5Cover3%7D%2B2%5Cpi%20l%2C%5C%3B%20l%5Cin%5Cmathbb%7BZ%7D%2C%5C%3B%20y_2%3D-%7B%5Cpi%5Cover3%7D%2B2%5Cpi%20w%2C%5C%3B%20w%5Cin%5Cmathbb%7BZ%7D%5C%5C%20x_3%3D%5Cpi%2B2%5Cpi%20k%2C%5C%3B%20k%5Cin%5Cmathbb%7BZ%7D%2C%5C%3B%20y_3%3D%5Cpi%2B2%5Cpi%20c%2C%5C%3B%20c%5Cin%5Cmathbb%7BZ%7D%20%5C%5C%200%5Cleq%7B%5Cpi%5Cover3%7D%2B2%5Cpi%20n%5Cleq%7B%5Cpi%5Cover2%7D%2C%5C%3B%20n%5Cin%5Cmathbb%7BZ%7D%5C%5C%20-%7B%5Cpi%5Cover3%7D%5Cleq2%5Cpi%20n%5Cleq%7B%5Cpi%5Cover2%7D-%7B%5Cpi%5Cover3%7D%2C%5C%3B%20n%5Cin%5Cmathbb%7BZ%7D%5C%5C%20%5Cleft%28-%7B1%5Cover6%7D%5Cleq%20n%5Cleq%7B1%5Cover12%7D%2C%5C%3B%20n%5Cin%5Cmathbb%7BZ%7D%5Cright%29%5CRightarrow%5Cmathbf%7Bn%3D0%7D%5CRightarrow%20M_%7B0%7D%5Cleft%28%7B%5Cpi%5Cover3%7D%3B%7B%5Cpi%5Cover3%7D%5Cright%29%5C%5C%200%5Cleq-%7B%5Cpi%5Cover3%7D%2B2%5Cpi%20l%5Cleq%7B%5Cpi%5Cover2%7D%2C%5C%3B%20l%5Cin%5Cmathbb%7BZ%7D%5C%5C%20%5Cleft%28%7B1%5Cover6%7D%5Cleq%20l%5Cleq%7B5%5Cover12%7D%2C%5C%3B%20l%5Cin%5Cmathbb%7BZ%7D%5Cright%29%5CRightarrow%5Cmathbf%7Bl%5Cnotin%5Cmathbb%7BZ%7D%7D%5C%5C%200%5Cleq%5Cpi%2B2%5Cpi%20k%5Cleq%7B%5Cpi%5Cover2%7D%2C%5C%3B%20k%5Cin%5Cmathbb%7BZ%7D%5C%5C%20%5Cleft%28-%7B1%5Cover2%7D%5Cleq%20k%5Cleq-%7B1%5Cover8%7D%2C%5C%3B%20k%5Cin%5Cmathbb%7BZ%7D%5Cright%29%5CRightarrow%5Cmathbf%7Bk%5Cnotin%5Cmathbb%7BZ%7D%7D%5C%5C)
Найдем критические точки на границах(исходя из уравнений границ области):
![\displaystyle \mathbf{y_1=0}\\ z=\sin{x}+\sin{x}=2\sin{x}\\ z'=2\cos{x}\\ 2\cos{x}=0\\ x_1={\pi\over2}+\pi n,\; n\in\mathbb{Z}\\\\ \mathbf{x_2=0}\\ z=2\sin{y}\\ z'=2\cos{y}\\ 2\cos{y}=0\\ y_2={\pi\over2}+\pi k,\; k\in\mathbb{Z}\\\\ \mathbf{y_3={\pi\over2}}\\ z=\sin{x}+\cos{x}+1\\ z'=\cos{x}-\sin{x}\\ x_3={\pi\over4}+\pi m,\; m\in\mathbb{Z}\\\\ \mathbf{x_4={\pi\over2}}\\ z=\sin{y}+\cos{y}+1\\ z'=\cos{y}-\sin{y}\\ y_4={\pi\over4}+\pi c,\; c\in\mathbb{Z}\\\\ M_1\left({\pi\over2};0\right),\;\;M_2\left(0;{\pi\over2}\right),\;\;M_3\left({\pi\over4};{\pi\over2}\right),\;\;M_4\left({\pi\over2};{\pi\over4}\right) \displaystyle \mathbf{y_1=0}\\ z=\sin{x}+\sin{x}=2\sin{x}\\ z'=2\cos{x}\\ 2\cos{x}=0\\ x_1={\pi\over2}+\pi n,\; n\in\mathbb{Z}\\\\ \mathbf{x_2=0}\\ z=2\sin{y}\\ z'=2\cos{y}\\ 2\cos{y}=0\\ y_2={\pi\over2}+\pi k,\; k\in\mathbb{Z}\\\\ \mathbf{y_3={\pi\over2}}\\ z=\sin{x}+\cos{x}+1\\ z'=\cos{x}-\sin{x}\\ x_3={\pi\over4}+\pi m,\; m\in\mathbb{Z}\\\\ \mathbf{x_4={\pi\over2}}\\ z=\sin{y}+\cos{y}+1\\ z'=\cos{y}-\sin{y}\\ y_4={\pi\over4}+\pi c,\; c\in\mathbb{Z}\\\\ M_1\left({\pi\over2};0\right),\;\;M_2\left(0;{\pi\over2}\right),\;\;M_3\left({\pi\over4};{\pi\over2}\right),\;\;M_4\left({\pi\over2};{\pi\over4}\right)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cmathbf%7By_1%3D0%7D%5C%5C%20z%3D%5Csin%7Bx%7D%2B%5Csin%7Bx%7D%3D2%5Csin%7Bx%7D%5C%5C%20z%27%3D2%5Ccos%7Bx%7D%5C%5C%202%5Ccos%7Bx%7D%3D0%5C%5C%20x_1%3D%7B%5Cpi%5Cover2%7D%2B%5Cpi%20n%2C%5C%3B%20n%5Cin%5Cmathbb%7BZ%7D%5C%5C%5C%5C%20%5Cmathbf%7Bx_2%3D0%7D%5C%5C%20z%3D2%5Csin%7By%7D%5C%5C%20z%27%3D2%5Ccos%7By%7D%5C%5C%202%5Ccos%7By%7D%3D0%5C%5C%20y_2%3D%7B%5Cpi%5Cover2%7D%2B%5Cpi%20k%2C%5C%3B%20k%5Cin%5Cmathbb%7BZ%7D%5C%5C%5C%5C%20%5Cmathbf%7By_3%3D%7B%5Cpi%5Cover2%7D%7D%5C%5C%20z%3D%5Csin%7Bx%7D%2B%5Ccos%7Bx%7D%2B1%5C%5C%20z%27%3D%5Ccos%7Bx%7D-%5Csin%7Bx%7D%5C%5C%20x_3%3D%7B%5Cpi%5Cover4%7D%2B%5Cpi%20m%2C%5C%3B%20m%5Cin%5Cmathbb%7BZ%7D%5C%5C%5C%5C%20%5Cmathbf%7Bx_4%3D%7B%5Cpi%5Cover2%7D%7D%5C%5C%20z%3D%5Csin%7By%7D%2B%5Ccos%7By%7D%2B1%5C%5C%20z%27%3D%5Ccos%7By%7D-%5Csin%7By%7D%5C%5C%20y_4%3D%7B%5Cpi%5Cover4%7D%2B%5Cpi%20c%2C%5C%3B%20c%5Cin%5Cmathbb%7BZ%7D%5C%5C%5C%5C%20M_1%5Cleft%28%7B%5Cpi%5Cover2%7D%3B0%5Cright%29%2C%5C%3B%5C%3BM_2%5Cleft%280%3B%7B%5Cpi%5Cover2%7D%5Cright%29%2C%5C%3B%5C%3BM_3%5Cleft%28%7B%5Cpi%5Cover4%7D%3B%7B%5Cpi%5Cover2%7D%5Cright%29%2C%5C%3B%5C%3BM_4%5Cleft%28%7B%5Cpi%5Cover2%7D%3B%7B%5Cpi%5Cover4%7D%5Cright%29)
Также нужно проверить и граничные точки прямоугольника:
![\displaystyle M_5\left(0;0\right),\;\;M_6\left({\pi\over2};{\pi\over2}\right)\\\\ z(M_0)={3\sqrt{3}\over2}\\ z(M_1)=2 \\ z(M_2)=2 \\ z(M_3)=1+\sqrt{2} \\ z(M_4)=1+\sqrt{2} \\ z(M_5)=0 \\ z(M_6)=2 \\ \displaystyle M_5\left(0;0\right),\;\;M_6\left({\pi\over2};{\pi\over2}\right)\\\\ z(M_0)={3\sqrt{3}\over2}\\ z(M_1)=2 \\ z(M_2)=2 \\ z(M_3)=1+\sqrt{2} \\ z(M_4)=1+\sqrt{2} \\ z(M_5)=0 \\ z(M_6)=2 \\](https://tex.z-dn.net/?f=%5Cdisplaystyle%20M_5%5Cleft%280%3B0%5Cright%29%2C%5C%3B%5C%3BM_6%5Cleft%28%7B%5Cpi%5Cover2%7D%3B%7B%5Cpi%5Cover2%7D%5Cright%29%5C%5C%5C%5C%20z%28M_0%29%3D%7B3%5Csqrt%7B3%7D%5Cover2%7D%5C%5C%20z%28M_1%29%3D2%20%5C%5C%20z%28M_2%29%3D2%20%5C%5C%20z%28M_3%29%3D1%2B%5Csqrt%7B2%7D%20%5C%5C%20z%28M_4%29%3D1%2B%5Csqrt%7B2%7D%20%5C%5C%20z%28M_5%29%3D0%20%5C%5C%20z%28M_6%29%3D2%20%5C%5C)
Сравним корни:
1+\sqrt{2}\\" alt="\displaystyle {3\over2}\sqrt{3}\;\;\vee\;\; 1+\sqrt{2}\\{9\cdot3\over4}\;\;\vee\;\; 1+2\sqrt{2}+2\\{27\over4}-{12\over4} \;\;\vee\;\