Ответ:
x∈(0,5;25)
Объяснение:
![log_7(2x-1)<2*log_77\\log_7(2x-1)<log_77^2\\log_7(2x-1)<log_749 log_7(2x-1)<2*log_77\\log_7(2x-1)<log_77^2\\log_7(2x-1)<log_749](https://tex.z-dn.net/?f=log_7%282x-1%29%3C2%2Alog_77%5C%5Clog_7%282x-1%29%3Clog_77%5E2%5C%5Clog_7%282x-1%29%3Clog_749)
0}} \right. \\\left \{ {{2x<50} \atop {2x>1}} \right. \\\left \{ {{x<25} \atop {x>0,5}} \right." alt="\left \{ {{2x-1<49} \atop {2x-1>0}} \right. \\\left \{ {{2x<50} \atop {2x>1}} \right. \\\left \{ {{x<25} \atop {x>0,5}} \right." align="absmiddle" class="latex-formula">
Запишем результат в форме промежутка:
x∈(0,5;25)