Помогите решить задачу!Две окружности, радиусы которых равны r и 3r, касаются внешне в...

0 голосов
49 просмотров

Помогите решить задачу!Две окружности, радиусы которых равны r и 3r, касаются внешне в точке K. К этим окружностям провели общую внешнюю касательную MN (точка M принадлежит большей окружности, точка N — меньшей).1) Докажите, что центры этих окружностей и точка их касания K лежат на одной прямой.2) Вычислите площадь фигуры KMN, ограниченной меньшими дугами ∪KM и ∪KN этих окружностей и отрезком MN.


Геометрия (654k баллов) | 49 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1) Отразим рисунок относительно прямой AB, окружности перейдут сами в себя, а K – перейдёт в точку K', симметричную относительно прямой AB. Если K не лежит на AB, то K и K' не совпадают, и K' – тоже точка касания, чего быть не может.

2) Радиусы, проведённые в точку касания, перпендикулярны касательной, поэтому AN и BM перпендикулярны NM, а тогда параллельны, ANMB – прямоугольная трапеция.

Проведём высоту трапеции AD. ANMD – прямоугольник, поэтому MD = AN = r, тогда BD = 2r. Кроме того, AB = AK + KB = 4r, поэтому ∠DAB = 30° (противолежащий катет равен половине гипотенузы), а по теореме Пифагора AD=\sqrt{AB^2-BD^2}=2\sqrt3r.

Площадь трапеции ANMB равна (AN + MB) \cdot AD / 2 = 4\sqrt3r^2

Площадь сектора KAN с центральным углом 90° + 30° = 120° = π/3 равна \pi r^2/3

Площадь сектора KBM с центральным углом 90° - 30° = 60° = π/6 равна \pi(3r)^2/6=3\pi r^2/2

Площадь искомой фигуры

4\sqrt3r^2-\dfrac{\pi r^2}{3}-\dfrac{3\pi r^2}2=\left(4\sqrt3-\dfrac{11\pi}6\right)r^2


image
(148k баллов)