Ответ:
-1
Пошаговое объяснение:
-4 = 4(cosπ + isinπ)
z1 = √2(cos(π/4) + isin(π/4))
z2 = √2(cos(3π/4) + isin(3π/4))
z3 = √2(cos(5π/4) + isin(5π/4)) = √2(cos(-3π/4) + isin(-3π/4))
z4 = √2(cos(7π/4) + isin(7π/4)) = √2(cos(-π/4) + isin(-π/4))
максимальный аргумент: 3π/4
Re(z2) = √2cos(3π/4) = √2 * (-√2/2) = -1