У правильній чотирикутній піраміді площа діагонального перерізу дорів-нює площі основи....

0 голосов
171 просмотров

У правильній чотирикутній піраміді площа діагонального перерізу дорів-нює площі основи. Знайдіть площу бічної поверхні піраміди, якщо сторонаїї основи дорівнює 2.​


Геометрия (34 баллов) | 171 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Площадь основы So = a² = 2² = 4 кв.ед.

В диагональном сечении - равнобедренный треугольник с основанием, равным диагонали квадрата в основании пирамиды, которая равна 2√2.

По условию задания:  So = (1/2)*(2√2)*Н = Н√2.

Отсюда находим высоту пирамиды: Н = 4/√2 = 2√2.

Теперь находим апофему: А = √(Н² + (а/2)²) = √(8 + 1) = √9 = 3.

Ответ: Sбок = (1/2)РА = (1/2)*(4*2)*3 = 12 кв.ед.

(309k баллов)