1) Sin²x - Cos2x = - Cos²x
(Sin²x + Cos²x) - Cos2x = 0
1 - Cos2x = 0
Cos2x = 1
2x = 2πn, n ∈ z
x = πn , n ∈ z
2) √3Sin²x + 2Cos2x = - √3Cos²x
(√3Sin²x + √3Cos²x) + 2Cos2x = 0
√3(Sin²x + Cos²x) + 2Cos2x = 0
√3 + 2Cos2x = 0
2Cos2x = - √3

3)6Sin²x - 7Cosx - 7 = 0
6(1 - Cos²x) - 7Cosx - 7 = 0
6 - 6Cos²x - 7Cosx - 7 = 0
- 6Cos²x - 7Cosx - 1 = 0
6Cos²x + 7Cosx + 1 =0
- 1 ≤ Cosx ≤ 1
1) Cosx = - 1
x = π + 2πn , n ∈ z
Не подходит, так как Sinx > 0

