3sin3x+4cos3x=5 РЕШИТЕ ПОЖАЛУЙСТА

0 голосов
71 просмотров

3sin3x+4cos3x=5 РЕШИТЕ ПОЖАЛУЙСТА


Алгебра (168 баллов) | 71 просмотров
Дан 1 ответ
0 голосов

Решим этот пример с помощью введения вспомогательного аргумента. Делим левую и  правую части на √(3²+4²)=5

Тогда (3/5)²+(4/5)²=1, и по основному тригонометрическому тождеству, можем считать одно из этих значений синусом, другое косинусом.

Получаем (sin3x)*(3/5)*+cos3x*(4/5)=1

sin(α+3х)=1, здесь приняли соsα=3/5,sinα=4/5, поэтому свернули по формуле синуса суммы двух аргументов.

α+3х=π/2+2πn;     n∈Z

3х=π/2-α+2πn; n∈Z

3х=π/2-arcsin4/5+2πn; n∈Z

х=π/6-(arcsin4/5)/3+2πn/3;  n∈Z

(654k баллов)