В основании пирамиды SABCD лежит квадрат, и высота пирамиды SB. Боковое ребро AS образует...

0 голосов
67 просмотров

В основании пирамиды SABCD лежит квадрат, и высота пирамиды SB. Боковое ребро AS образует с основанием пирамиды угол 30 градусов. а) Вычислите значение угла SAD. Обоснуйте.б) Докажите, что площадь грани ASB равна 1/6 от площади боковой поверхности пирамиды.


image

Математика (9.0k баллов) | 67 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

а) Прямая AD перпендикулярна двум прямым АВ и SВ, лежащим в плоскости АВS, поэтому по теореме о трех перпендикулярах она перпендикулярна и любой прямой, принадлежащей этой плоскости, значит перпендикулярна и прямой SA.

Ответ: угол SAD равен 90 градусов.

б) Примем сторону основания за 1.

Если боковое ребро AS образует с основанием пирамиды угол 30 градусов, то высота пирамиды SВ равна 1*tg 30 = 1/√3.

Площади граней SAВ и SВС равны по (1/2)*1*(1/√3) = 1/(2√3).

Боковое ребро SA равно SС и равно √(1² + (1/√3)²) = √(4/3) = 2/√3.

Площади граней SAD и SСD равны по (1/2)*1*(2/√3) = 1/√3.

Площадь боковой поверхности равна:

Sбoк = 2*(1/(2√3)) + 2*(1/(√3)) = 3/√3.

Отношение площади грани SAВ к Sбoк равно:

SAВ/Sбoк = (1/(2√3) )/(3/√3) = 1/6.

(309k баллов)