Cos^4x*sin^4x+sin^2x
Помогите
Ответ:
Пошаговое объяснение:
sin^4x-cos^4x=sin2x
sin^4x-cos^4x=(sin^2x+cos^2x)*(sin^2x-cosx^2x) = 1*(sin^2x-cos^2x) = -cos2x
-cos2x=sin2x
sin2x+cos2x=0 делим на √2
1/√2sin2x+1/√2cos2x=0
sin(2x+pi/4)=0
2x+pi/4=pi*k
2x=pi*k-pi/4
x=(pi*k)/2 - pi/8