
![2)\;\sqrt[3]{x^3+x^2-4}=\sqrt[3]{x^2+4}\\OD3:\;x\in\mathbb{R}\\\\x^3+x^2-4=x^2+4\\x^3-8=0\\x^3=8\\x=\sqrt[3]8=2\\\\\Pi POBEPKA:\\\sqrt[3]{2^3+2^2-4}=\sqrt[3]{8+4-4}=\sqrt[3]8=2\\\sqrt[3]{2^2+4}=\sqrt[3]{4+4}=\sqrt[3]8=2\\2=2 2)\;\sqrt[3]{x^3+x^2-4}=\sqrt[3]{x^2+4}\\OD3:\;x\in\mathbb{R}\\\\x^3+x^2-4=x^2+4\\x^3-8=0\\x^3=8\\x=\sqrt[3]8=2\\\\\Pi POBEPKA:\\\sqrt[3]{2^3+2^2-4}=\sqrt[3]{8+4-4}=\sqrt[3]8=2\\\sqrt[3]{2^2+4}=\sqrt[3]{4+4}=\sqrt[3]8=2\\2=2](https://tex.z-dn.net/?f=2%29%5C%3B%5Csqrt%5B3%5D%7Bx%5E3%2Bx%5E2-4%7D%3D%5Csqrt%5B3%5D%7Bx%5E2%2B4%7D%5C%5COD3%3A%5C%3Bx%5Cin%5Cmathbb%7BR%7D%5C%5C%5C%5Cx%5E3%2Bx%5E2-4%3Dx%5E2%2B4%5C%5Cx%5E3-8%3D0%5C%5Cx%5E3%3D8%5C%5Cx%3D%5Csqrt%5B3%5D8%3D2%5C%5C%5C%5C%5CPi%20POBEPKA%3A%5C%5C%5Csqrt%5B3%5D%7B2%5E3%2B2%5E2-4%7D%3D%5Csqrt%5B3%5D%7B8%2B4-4%7D%3D%5Csqrt%5B3%5D8%3D2%5C%5C%5Csqrt%5B3%5D%7B2%5E2%2B4%7D%3D%5Csqrt%5B3%5D%7B4%2B4%7D%3D%5Csqrt%5B3%5D8%3D2%5C%5C2%3D2)
0\\x+1>0\\2x^2-3x-5>0\end{cases}\Rightarrow\begin{cases}x>1\\x>-1\\2(x-2,5)(x+1)>0\end{cases}\Rightarrow x\in(2,5;\;+\infty)\\\\\log_4((x-1)(x+1))=\log_4(2x^2-3x-5)\\x^2-1=2x^2-3x-5\\x^2-3x-4=0\\D=9-4\cdot1\cdot(-4)=9+16=25=5^2\\x_{1,2}=\frac{3\pm5}2\\x_1=-1\;-\;He\;nogx.\;no\;OD3\\x_2=4" alt="3)\;\log_4(x-1)+\log_4(x+1)=\log_4(2x^2-3x-5)\\OD3:\\\begin{cases}x-1>0\\x+1>0\\2x^2-3x-5>0\end{cases}\Rightarrow\begin{cases}x>1\\x>-1\\2(x-2,5)(x+1)>0\end{cases}\Rightarrow x\in(2,5;\;+\infty)\\\\\log_4((x-1)(x+1))=\log_4(2x^2-3x-5)\\x^2-1=2x^2-3x-5\\x^2-3x-4=0\\D=9-4\cdot1\cdot(-4)=9+16=25=5^2\\x_{1,2}=\frac{3\pm5}2\\x_1=-1\;-\;He\;nogx.\;no\;OD3\\x_2=4" align="absmiddle" class="latex-formula">

![4)\;\sqrt{x^2-2x}=4+x\\OD3:\\x^2-2x\geq0\\x(x-2)\geq0\\x\in(-\infty;\;0]\cup[2;\;+\infty)\\\\x^2-2x=(4+x)^2\\x^2-2x=16+8x+x^2\\10x+16=0\\10x=-16\\x=-1,6\\\\\Pi POBEPKA:\\\sqrt{(-1,6)^2-2\cdot(-1,6)}=\sqrt{2,56+3,2}=\sqrt{5,76}=2,4\\4+(-1,6)=4-1,6=2,4\\2,4=2,4 4)\;\sqrt{x^2-2x}=4+x\\OD3:\\x^2-2x\geq0\\x(x-2)\geq0\\x\in(-\infty;\;0]\cup[2;\;+\infty)\\\\x^2-2x=(4+x)^2\\x^2-2x=16+8x+x^2\\10x+16=0\\10x=-16\\x=-1,6\\\\\Pi POBEPKA:\\\sqrt{(-1,6)^2-2\cdot(-1,6)}=\sqrt{2,56+3,2}=\sqrt{5,76}=2,4\\4+(-1,6)=4-1,6=2,4\\2,4=2,4](https://tex.z-dn.net/?f=4%29%5C%3B%5Csqrt%7Bx%5E2-2x%7D%3D4%2Bx%5C%5COD3%3A%5C%5Cx%5E2-2x%5Cgeq0%5C%5Cx%28x-2%29%5Cgeq0%5C%5Cx%5Cin%28-%5Cinfty%3B%5C%3B0%5D%5Ccup%5B2%3B%5C%3B%2B%5Cinfty%29%5C%5C%5C%5Cx%5E2-2x%3D%284%2Bx%29%5E2%5C%5Cx%5E2-2x%3D16%2B8x%2Bx%5E2%5C%5C10x%2B16%3D0%5C%5C10x%3D-16%5C%5Cx%3D-1%2C6%5C%5C%5C%5C%5CPi%20POBEPKA%3A%5C%5C%5Csqrt%7B%28-1%2C6%29%5E2-2%5Ccdot%28-1%2C6%29%7D%3D%5Csqrt%7B2%2C56%2B3%2C2%7D%3D%5Csqrt%7B5%2C76%7D%3D2%2C4%5C%5C4%2B%28-1%2C6%29%3D4-1%2C6%3D2%2C4%5C%5C2%2C4%3D2%2C4)