СРОООЧНООО 4 sin x + 16 cos x = корень 272 Решить уравнение- найти х

0 голосов
34 просмотров

СРОООЧНООО 4 sin x + 16 cos x = корень 272 Решить уравнение- найти х


Математика (14 баллов) | 34 просмотров
Дан 1 ответ
0 голосов

image cos\phi = \frac{4}{\sqrt{272}}, sin\phi = \frac{16}{\sqrt{272}} =>\\ cos\phi *sinx + sin\phi * cosx = 1\\sin(x+\phi) = 1\\x + \phi = \frac{\pi}{2} + 2\pi n, n \in Z\\ x = \frac{\pi}{2} - \phi + 2\pi n, n \in Z => x = \frac{\pi}{2} - arccos\frac{4}{\sqrt{272}}+ 2\pi n, n \in Z\\" alt="4sinx + 16cosx = \sqrt{272}\\\sqrt{272}(\frac{4}{\sqrt{272}}sinx + \frac{16}{\sqrt{272}}cosx) = \sqrt{272}\\ \phi = arccos\frac{4}{\sqrt{272}} = arcsin\frac{16}{\sqrt{272}} => cos\phi = \frac{4}{\sqrt{272}}, sin\phi = \frac{16}{\sqrt{272}} =>\\ cos\phi *sinx + sin\phi * cosx = 1\\sin(x+\phi) = 1\\x + \phi = \frac{\pi}{2} + 2\pi n, n \in Z\\ x = \frac{\pi}{2} - \phi + 2\pi n, n \in Z => x = \frac{\pi}{2} - arccos\frac{4}{\sqrt{272}}+ 2\pi n, n \in Z\\" align="absmiddle" class="latex-formula">

Answer: x = \frac{\pi}{2} - arccos\frac{4}{\sqrt{272}}+ 2\pi n, n \in Z

(1.6k баллов)