1.
![2\sin\left(\dfrac{\pi x}{18}+\dfrac{\pi}{9}\right)+1=0 2\sin\left(\dfrac{\pi x}{18}+\dfrac{\pi}{9}\right)+1=0](https://tex.z-dn.net/?f=2%5Csin%5Cleft%28%5Cdfrac%7B%5Cpi%20x%7D%7B18%7D%2B%5Cdfrac%7B%5Cpi%7D%7B9%7D%5Cright%29%2B1%3D0)
![2\sin\left(\dfrac{\pi x}{18}+\dfrac{\pi}{9}\right)=-1 2\sin\left(\dfrac{\pi x}{18}+\dfrac{\pi}{9}\right)=-1](https://tex.z-dn.net/?f=2%5Csin%5Cleft%28%5Cdfrac%7B%5Cpi%20x%7D%7B18%7D%2B%5Cdfrac%7B%5Cpi%7D%7B9%7D%5Cright%29%3D-1)
![\sin\left(\dfrac{\pi x}{18}+\dfrac{\pi}{9}\right)=-\dfrac{1}{2} \sin\left(\dfrac{\pi x}{18}+\dfrac{\pi}{9}\right)=-\dfrac{1}{2}](https://tex.z-dn.net/?f=%5Csin%5Cleft%28%5Cdfrac%7B%5Cpi%20x%7D%7B18%7D%2B%5Cdfrac%7B%5Cpi%7D%7B9%7D%5Cright%29%3D-%5Cdfrac%7B1%7D%7B2%7D)
![\dfrac{\pi x}{18}+\dfrac{\pi}{9}=(-1)^{k+1}\cdot\dfrac{\pi}{6} +\pi k \dfrac{\pi x}{18}+\dfrac{\pi}{9}=(-1)^{k+1}\cdot\dfrac{\pi}{6} +\pi k](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpi%20x%7D%7B18%7D%2B%5Cdfrac%7B%5Cpi%7D%7B9%7D%3D%28-1%29%5E%7Bk%2B1%7D%5Ccdot%5Cdfrac%7B%5Cpi%7D%7B6%7D%20%2B%5Cpi%20k)
![\dfrac{x}{18}+\dfrac{1}{9}=(-1)^{k+1}\cdot\dfrac{1}{6} +k \dfrac{x}{18}+\dfrac{1}{9}=(-1)^{k+1}\cdot\dfrac{1}{6} +k](https://tex.z-dn.net/?f=%5Cdfrac%7Bx%7D%7B18%7D%2B%5Cdfrac%7B1%7D%7B9%7D%3D%28-1%29%5E%7Bk%2B1%7D%5Ccdot%5Cdfrac%7B1%7D%7B6%7D%20%2Bk)
![\dfrac{x}{18}=-\dfrac{1}{9}+(-1)^{k+1}\cdot\dfrac{1}{6} +k \dfrac{x}{18}=-\dfrac{1}{9}+(-1)^{k+1}\cdot\dfrac{1}{6} +k](https://tex.z-dn.net/?f=%5Cdfrac%7Bx%7D%7B18%7D%3D-%5Cdfrac%7B1%7D%7B9%7D%2B%28-1%29%5E%7Bk%2B1%7D%5Ccdot%5Cdfrac%7B1%7D%7B6%7D%20%2Bk)
![x=-2+3\cdot(-1)^{k+1} +18k,\ k\in\mathbb{Z} x=-2+3\cdot(-1)^{k+1} +18k,\ k\in\mathbb{Z}](https://tex.z-dn.net/?f=x%3D-2%2B3%5Ccdot%28-1%29%5E%7Bk%2B1%7D%20%2B18k%2C%5C%20k%5Cin%5Cmathbb%7BZ%7D)
2.
![14-3\sin3x=\sqrt{6} 14-3\sin3x=\sqrt{6}](https://tex.z-dn.net/?f=14-3%5Csin3x%3D%5Csqrt%7B6%7D)
![3\sin3x=14-\sqrt{6} 3\sin3x=14-\sqrt{6}](https://tex.z-dn.net/?f=3%5Csin3x%3D14-%5Csqrt%7B6%7D)
![\sin3x=\dfrac{14-\sqrt{6}}{3} \sin3x=\dfrac{14-\sqrt{6}}{3}](https://tex.z-dn.net/?f=%5Csin3x%3D%5Cdfrac%7B14-%5Csqrt%7B6%7D%7D%7B3%7D)
Оценим значение правой части следующим образом:
\dfrac{14-\sqrt{9}}{3}=\dfrac{14-3}{3}=\dfrac{11}{3}>1" alt="\dfrac{14-\sqrt{6}}{3}>\dfrac{14-\sqrt{9}}{3}=\dfrac{14-3}{3}=\dfrac{11}{3}>1" align="absmiddle" class="latex-formula">
Итак, правая часть больше 1, а синус принимает значения на отрезке от -1 до 1. Значит, уравнение не имеет корней.
![x\in\varnothing x\in\varnothing](https://tex.z-dn.net/?f=x%5Cin%5Cvarnothing)