Ответ:
(a²+4)/(4a)
Объяснение:
((2-a)/(2+a) -(a+2)/(a-2))÷((2+a)/(2-a) +(a-2)/(a+2))=(a²+4)/(4a)
1) (2-a)/(2+a) -(a+2)/(a-2)=(2-a)/(2+a) +(a+2)/(2-a)=((a-2)²+(a+2)²)/(4-a²)
2)(2+a)/(2-a) +(a-2)/(a+2)=(a-2)/(a+2) -(2+a)/(a-2)=((a-2)²-(a+2)²)/(a²-4)
3) ((a-2)²+(a+2)²)/(4-a²) ÷((a-2)²-(a+2)²)/(a²-4)=-((a-2)²+(a+2)²)/(a²-4) ·(a²-4)/((a-2)²-(a+2)²)=-(a²-4a+4+a²+4a+4)/((a-2-a-2)(a-2+a+2))=-(2a²+8)/(-4·2a)=(-2(a²+4))/(-4·2a)=(a²+4)/(4a)