Производная равна: y' = √3 + 2cos(x).
Приравняем её нулю: √3 + 2cos(x) = 0.
Получаем cos(x) = -√3/2.
Переменная определяется по формуле:
x = (-1)n arcsin(a) + n π, n = 0, 1 ... ∈ Z.
На заданном промежутке есть только 1 критическая точка при х = -π/3 = -60 градусов (в радианах это -1,0472).
Определяем её характер:
x = -2 -1,0472 -1
y' =-0,0865 0 0,0491.
Как видим, это точка минимума.