Задача: В равнобедренном треугольнике ABC поведена высота BD к основанию AC. Длина высоты 8,5 см, длина боковой стороны — 17 см. Определить углы этого треугольника.
Решение:
AD = DC = 17/2 = 8,5
BD = AD = DC = 8,5 ⇒ ΔABD = ΔCBD — равнобедренные, прямоугольные, ∡BDA = ∡BDC = 90°
∡DAB = ∡DBA = ∡DCB = ∡DBC = 90/2 = 45°
∡ABC = ∡DBA + ∡DBC = 45+45 = 90°
Ответ: ∡BAC = 45°,
∡BCA = 45°,
∡ABC = 90°.
Задача: В равнобедренном треугольнике ABC величина угла вершины ∡B = 30°. Определить угол основания AC с высотой AM, проведенной к стороне BC. ∡MAC - ?
Решение:
Р-м ΔABC — равнобедренный.
∡A = ∡C = (180−∡B)/2 = (180−30)/2 = 75°.
Р-м ΔACM — прямоугольный
∡AMC = 90°, ∡ACM = ∡C = 75°. Исходя из теоремы о сумме углов треугольника, градусная мера угла ∡MAC будет равна:
∡MAC = 180−(∡AMC+∡ACM) = 180−(90+75) = 180−165 = 15°
Ответ: ∡MAC = 15°.