znanija.com/task/35269886
Упростить: 1 + tg3x - tg(60°+x )*tgx * * * 1 + tg(3x) - tg(60+X) * tg(X) * * *
Решение : * * * tg(α+β) = (tgα +tgβ) / (1 - tgα*tgβ) * * *
tg3x =tg(x+2x)=(tgx+tg2x) / (1 -tgx*tg2x) =
( tgx +2tgx/(1 -tg²x) ) / (1 -tgx*2tgx/(1 -tg²x) = (3tgx - tg³x ) / (1-3tg²x)
- - -
tg3x = tgx*(3 - tg²x ) / (1 - 3tg²x) =
tgx*(√3 - tgx )(√3 + tgx ) / (1 - √3tgx)(1 + √3tgx) =
tgx*(√3 - tgx )/ (1 + √3tgx) * (√3 + tgx ) / (1 - √3tgx) =
tgx* [ (tg60°- tgx )/ (1 + tg60°*tgx) ]* [ (tg60°+ tgx ) / (1 - tg60°*tgx) ]
tgx*tg(60°+ x) *tg(60°- x) ⇒ tgx*tg(60°+ x) = tg3x / tg(60°- x)
- - -
1 + tg3x - tg(60°+x )*tgx = 1 +tg3x - tg3x / tg(60°- x) =
1 +tg3x ( 1 - 1 / tg(60°- x) ) = 1 +tg3x ( 1 - 1 / tg( 90° - (30°+x) ) =
1 +tg3x ( 1 - 1 / ctg(30°+x) ) = 1 + tg3x ( 1 - tg(30°+x) )
ломается