2sin^2(x^2)+3cos(x^2)=0
------
sin^2 x + cos^2 x = 1
sin x, cos x ∈ [-1, 1]
cos x = a
|a| <=1 x = +- arccos(a) + 2πk k∈Z</strong>
2(1 - cos^2(x^2))+3cos(x^2)=0
2cos^2(x^2)) - 3cos(x^2)- 2 =0
cos(x^2) = t ∈ [-1, 1]
2t^2 - 3t - 2 = 0
D = 9 + 16 = 25
t12 = (3 +- 5)/4 = 2 -1/2
t=2 нет > 1
t = -1/2
cos(x^2) = -1/2
x^2 = arccos(-1/2) + 2πk k∈Z
x^2 = +- 2π/3 + 2πk k∈Z
а теперь ищем нужные корни
x₁ = +-√(2π/3 + 2πk) k∈Z и k>=0
x₂ = +-√(-2π/3 + 2πn) n∈Z n>0