Ответ: 1) R = 3 2) ![(x-3)^{2}+(y+4)^{2}+(z-5)^{2}=5^{2} (x-3)^{2}+(y+4)^{2}+(z-5)^{2}=5^{2}](https://tex.z-dn.net/?f=%28x-3%29%5E%7B2%7D%2B%28y%2B4%29%5E%7B2%7D%2B%28z-5%29%5E%7B2%7D%3D5%5E%7B2%7D)
Объяснение:
1) Выделим полные квадраты и приведем к каноническому уравнению сферы:
![x^{2}+y^{2}-4y+z^{2}-4z-1=0\\x^{2}+y^{2}-4y+4-4+z^{2}-4z+4-4-1=0\\x^{2}+(y-2)^{2}+(z-2)^{2}=3^{2}\\ x^{2}+y^{2}-4y+z^{2}-4z-1=0\\x^{2}+y^{2}-4y+4-4+z^{2}-4z+4-4-1=0\\x^{2}+(y-2)^{2}+(z-2)^{2}=3^{2}\\](https://tex.z-dn.net/?f=x%5E%7B2%7D%2By%5E%7B2%7D-4y%2Bz%5E%7B2%7D-4z-1%3D0%5C%5Cx%5E%7B2%7D%2By%5E%7B2%7D-4y%2B4-4%2Bz%5E%7B2%7D-4z%2B4-4-1%3D0%5C%5Cx%5E%7B2%7D%2B%28y-2%29%5E%7B2%7D%2B%28z-2%29%5E%7B2%7D%3D3%5E%7B2%7D%5C%5C)
R=3
2) Выпишем уравнение сферы с центром в точке O и неизвестным радиусом R:
![(x-3)^{2}+(y+4)^{2}+(z-5)^{2}=R^{2} (x-3)^{2}+(y+4)^{2}+(z-5)^{2}=R^{2}](https://tex.z-dn.net/?f=%28x-3%29%5E%7B2%7D%2B%28y%2B4%29%5E%7B2%7D%2B%28z-5%29%5E%7B2%7D%3DR%5E%7B2%7D)
Подставим в него координаты точки B:
![(3-3)^{2}+(0+4)^{2}+(2-5)^{2}=R^{2}\\0+16+9=R^{2}\\R=5 (3-3)^{2}+(0+4)^{2}+(2-5)^{2}=R^{2}\\0+16+9=R^{2}\\R=5](https://tex.z-dn.net/?f=%283-3%29%5E%7B2%7D%2B%280%2B4%29%5E%7B2%7D%2B%282-5%29%5E%7B2%7D%3DR%5E%7B2%7D%5C%5C0%2B16%2B9%3DR%5E%7B2%7D%5C%5CR%3D5)
Подставим найденное R в исходное уравнение:
![(x-3)^{2}+(y+4)^{2}+(z-5)^{2}=5^{2} (x-3)^{2}+(y+4)^{2}+(z-5)^{2}=5^{2}](https://tex.z-dn.net/?f=%28x-3%29%5E%7B2%7D%2B%28y%2B4%29%5E%7B2%7D%2B%28z-5%29%5E%7B2%7D%3D5%5E%7B2%7D)