Ответ:
x=±0,5arccos(7/9)+kπ, k={1; 2}
Объяснение:
24 tg²x - 9 sin²x = 2
24 sin²x/cos²x - 9 sin²x = 2
0≠cos²x=t⇒0
sin²x=1-cos²x=1-t
24(1-t)/t-9(1-t)=2
t[24(1-t)/t-9(1-t)]=2t
24(1-t)-9t(1-t)=2t
24-24t-9t+9t²-2t=0
9t²-35t+24=0
D=1225-864=361=19²
t₁=(35-19)/18=16/18=8/9
t₂=(35+19)/18=3>1
(1+cos2x)/2=cos²x=t=8/9
1+cos2x=16/9
cos2x=7/9
2x=±arccos(7/9)+2kπ
x=±0,5arccos(7/9)+kπ, k∈Z
0
0<0,5arccos(7/9)<π/8, x∈[(3π)/4; (9π)/4]⇒x=±0,5arccos(7/9)+kπ, k={1; 2}</p>