я точно знаю, что раньше скалярным произведением называлась сумма произведений соответствующих координат, к примеру, вектор а с координатами х₁ и у₁, вектор b имеет координаты х₂;у₂
тогда скалярное произведение а*b= х₁*у₁+х₂*у₂
совсем недавно столкнулся с тем, что теперь это трактуют как теорему, а определяют скалярное произведение как произведение длин векторов на косинус угла между ними.
т.е. а*b=IаI*IbI*cosβ
По скалярному произведению можно определить вид угла. Если скалярное произведение двух ненулевых векторов равно нулю, то угол между векторами прямой. Если скалярное произведение двух ненулевых векторов больше нуля, то угол между векторами острый, а скалярное произведение меньше нуля, то угол тупой. Справедливы и обратные утверждения. т.е. если угол прямой, тупой, острый, то скалярное произведение соответственно равно нулю, меньше или больше нуля.