Объяснение:
№1
Чтобы найти нам площадь ABCD нам надо найти высоту BH и основание AD.
1. Рассмотрим ∆ABH: sinA=BH/AB
1/2=BH/8
отсюда BH=4;
2. AD=AH+HD
cis30°=AH/AB
√(3)/2=AH/8
8√(3)=2AH
AH=4√(3)
Отсюда AD=12+4√(3)≈19
3. Площадь ABCD=BH*AD=4*19=76см².
№2
Задача. Дан параллелограмм ABCD, боковая сторона равна 4 см, диагональ соединяющая вершины тупых уголов равна 5 см и перпендикулярна к боковым сторонам. Найдите основания параллелограмма.
Решение:
Диагональ делит параллелограмм на 2 прямоугольных ∆ABD и ∆BDC.
Рассмотрим ∆ABD:
По теореме Пифагора:
AD²=AB²+AD²
AD²=16+25
AD²=41
AD=√(41)