Модуль вектора а(р + 1; -3) дорівнює 5. Знайдіть р. Как можно быстрее! ​

0 голосов
24 просмотров

Модуль вектора а(р + 1; -3) дорівнює 5. Знайдіть р. Как можно быстрее! ​


Алгебра (717 баллов) | 24 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Решите задачу:

\vec{a}=(p+1\, ;\, -3)\; \; ,\; \; \; |\vec{a}|=5\\\\|\vec{a}|=\sqrt{(p+1)^2+(-3)^2}=\sqrt{p^2+2p+10}=5\\\\p^2+2p+10=25\\\\p^2+2p-15=0\\\\\underline {\; p_1=-5\; ,\; p_2=3}\; \; (teorema\; Vieta)\\\\p_1+1=-5+1=-4\; \; ,\; \; \; p_2+1=3+1=4\\\\\vec{a}=(-4\, ;\, -3)\; \; \; ili\; \; \; \vec{a}=(4\, ;\, -3)

(831k баллов)
0

извиняюсь, а откуда в ответе появилась 4 и - 4?

0

нашли же не одно значение "р", а два.....соответственно подставляем сначала вместо "р" число (-5), а потом число 3...находим два значения абсциссы

0

а, точно, спасибо (постоянно забываю про этот этап)