0\; ,\\+\infty \; ,\; esli\; x\leq 0\; .\end{array}\right" alt="1)\; \; \sum \limits _{n=1}^{\infty }e^{-n^2x}\\\\ \lim\limits _{n \to +\infty}\dfrac{|u_{n+1}|}{|u_{n}|}= \lim\limits _{n \to +\infty}\dfrac{e^{-(n+1)^2x}}{e^{-n^2x}}= \lim\limits _{n \to +\infty}\dfrac{e^{(-n^2-2n-1)x}}{e^{-n^2x}}= \lim\limits _{n \to +\infty}\; e^{-(2n+1)x}=\\\\\\= \lim\limits _{n \to +\infty}\dfrac{1}{e^{(2n+1)x}}=\left\{\begin{array}{l}0<1\; ,\; esli\; x>0\; ,\\+\infty \; ,\; esli\; x\leq 0\; .\end{array}\right" align="absmiddle" class="latex-formula">
![esli\; \; x\in (0,+\infty )\; ,to\; \; e^{(2n+1)x}\to +\infty \; ,\; \; \dfrac{1}{ e^{(2n+1)x}}\to 0<1\\\\esli\; \; x\in (-\infty ,0)\; ,to\; \; e^{(2n+1)x}\to 0\; ,\; \; \frac{1}{ e^{(2n+1)x}}\to \infty\\\\Otvet:\; \; x\in (0;+\infty )\; . esli\; \; x\in (0,+\infty )\; ,to\; \; e^{(2n+1)x}\to +\infty \; ,\; \; \dfrac{1}{ e^{(2n+1)x}}\to 0<1\\\\esli\; \; x\in (-\infty ,0)\; ,to\; \; e^{(2n+1)x}\to 0\; ,\; \; \frac{1}{ e^{(2n+1)x}}\to \infty\\\\Otvet:\; \; x\in (0;+\infty )\; .](https://tex.z-dn.net/?f=esli%5C%3B%20%5C%3B%20x%5Cin%20%280%2C%2B%5Cinfty%20%29%5C%3B%20%2Cto%5C%3B%20%5C%3B%20e%5E%7B%282n%2B1%29x%7D%5Cto%20%2B%5Cinfty%20%5C%3B%20%2C%5C%3B%20%5C%3B%20%20%5Cdfrac%7B1%7D%7B%20e%5E%7B%282n%2B1%29x%7D%7D%5Cto%200%3C1%5C%5C%5C%5Cesli%5C%3B%20%5C%3B%20x%5Cin%20%28-%5Cinfty%20%2C0%29%5C%3B%20%2Cto%5C%3B%20%5C%3B%20e%5E%7B%282n%2B1%29x%7D%5Cto%200%5C%3B%20%2C%5C%3B%20%5C%3B%20%5Cfrac%7B1%7D%7B%20e%5E%7B%282n%2B1%29x%7D%7D%5Cto%20%5Cinfty%5C%5C%5C%5COtvet%3A%5C%3B%20%5C%3B%20x%5Cin%20%280%3B%2B%5Cinfty%20%29%5C%3B%20.)
![2)\; \; \sum \limits _{n=1}^{+\infty }\, 2^{n}\cdot x^{n}=\sum \limits _{n=1}^{+\infty }\, (2x)^{n}\\\\ \lim\limits _{n \to +\infty}\sqrt[n]{|u_{n}(x)|}= \lim\limits_{n \to +\infty}\sqrt[n]{|2x|^{n}}=|2x|<1\\\\-1<2x<1\; \; \; \Rightarrow \; \; \; -\frac{1}{2}<x<\frac{1}{2}\\\\x=\frac{1}{2}:\; \; \sum \limits _{n=1}^{+\infty }1=1+1+1+\, ...\; \; rasxoditsya\\\\x=-\frac{1}{2}:\; \; \sum \limits _{n=1}^{+\infty }(-1)^{n}=-1+1-1+...rasxoditsya\\\\Otvet:\; \; x\in \Big(-\dfrac{1}{2}\, ;\, \dfrac{1}{2}\Big)\; . 2)\; \; \sum \limits _{n=1}^{+\infty }\, 2^{n}\cdot x^{n}=\sum \limits _{n=1}^{+\infty }\, (2x)^{n}\\\\ \lim\limits _{n \to +\infty}\sqrt[n]{|u_{n}(x)|}= \lim\limits_{n \to +\infty}\sqrt[n]{|2x|^{n}}=|2x|<1\\\\-1<2x<1\; \; \; \Rightarrow \; \; \; -\frac{1}{2}<x<\frac{1}{2}\\\\x=\frac{1}{2}:\; \; \sum \limits _{n=1}^{+\infty }1=1+1+1+\, ...\; \; rasxoditsya\\\\x=-\frac{1}{2}:\; \; \sum \limits _{n=1}^{+\infty }(-1)^{n}=-1+1-1+...rasxoditsya\\\\Otvet:\; \; x\in \Big(-\dfrac{1}{2}\, ;\, \dfrac{1}{2}\Big)\; .](https://tex.z-dn.net/?f=2%29%5C%3B%20%5C%3B%20%5Csum%20%5Climits%20_%7Bn%3D1%7D%5E%7B%2B%5Cinfty%20%7D%5C%2C%202%5E%7Bn%7D%5Ccdot%20x%5E%7Bn%7D%3D%5Csum%20%5Climits%20_%7Bn%3D1%7D%5E%7B%2B%5Cinfty%20%7D%5C%2C%20%282x%29%5E%7Bn%7D%5C%5C%5C%5C%20%5Clim%5Climits%20_%7Bn%20%5Cto%20%2B%5Cinfty%7D%5Csqrt%5Bn%5D%7B%7Cu_%7Bn%7D%28x%29%7C%7D%3D%20%5Clim%5Climits_%7Bn%20%5Cto%20%2B%5Cinfty%7D%5Csqrt%5Bn%5D%7B%7C2x%7C%5E%7Bn%7D%7D%3D%7C2x%7C%3C1%5C%5C%5C%5C-1%3C2x%3C1%5C%3B%20%5C%3B%20%5C%3B%20%5CRightarrow%20%5C%3B%20%5C%3B%20%5C%3B%20-%5Cfrac%7B1%7D%7B2%7D%3Cx%3C%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5Cx%3D%5Cfrac%7B1%7D%7B2%7D%3A%5C%3B%20%5C%3B%20%5Csum%20%5Climits%20_%7Bn%3D1%7D%5E%7B%2B%5Cinfty%20%7D1%3D1%2B1%2B1%2B%5C%2C%20...%5C%3B%20%5C%3B%20rasxoditsya%5C%5C%5C%5Cx%3D-%5Cfrac%7B1%7D%7B2%7D%3A%5C%3B%20%5C%3B%20%5Csum%20%5Climits%20_%7Bn%3D1%7D%5E%7B%2B%5Cinfty%20%7D%28-1%29%5E%7Bn%7D%3D-1%2B1-1%2B...rasxoditsya%5C%5C%5C%5COtvet%3A%5C%3B%20%5C%3B%20x%5Cin%20%5CBig%28-%5Cdfrac%7B1%7D%7B2%7D%5C%2C%20%3B%5C%2C%20%5Cdfrac%7B1%7D%7B2%7D%5CBig%29%5C%3B%20.)
![3)\; \; \sum \limits _{n=1}^{+\infty }\; \dfrac{x^{n}}{n\cdot 3^{n-1}}\\\\ \lim\limits _{n \to +\infty}\dfrac{|u_{n+1}|}{|u_{n}|}=\lim\limits _{n \to +\infty}\dfrac{|x|^{n+1}}{(n+1)\cdot 3^{n}}\; :\;\dfrac{|x|^{n}}{n\cdot 3^{n-1}}= \lim\limits _{n \to +\infty}\, \dfrac{|x|}{3}=\dfrac{|x|}{3}<1\\\\\\|x|<3\; \; \; \Rightarrow \; \; \; -3<x<3 3)\; \; \sum \limits _{n=1}^{+\infty }\; \dfrac{x^{n}}{n\cdot 3^{n-1}}\\\\ \lim\limits _{n \to +\infty}\dfrac{|u_{n+1}|}{|u_{n}|}=\lim\limits _{n \to +\infty}\dfrac{|x|^{n+1}}{(n+1)\cdot 3^{n}}\; :\;\dfrac{|x|^{n}}{n\cdot 3^{n-1}}= \lim\limits _{n \to +\infty}\, \dfrac{|x|}{3}=\dfrac{|x|}{3}<1\\\\\\|x|<3\; \; \; \Rightarrow \; \; \; -3<x<3](https://tex.z-dn.net/?f=3%29%5C%3B%20%5C%3B%20%5Csum%20%5Climits%20_%7Bn%3D1%7D%5E%7B%2B%5Cinfty%20%7D%5C%3B%20%5Cdfrac%7Bx%5E%7Bn%7D%7D%7Bn%5Ccdot%203%5E%7Bn-1%7D%7D%5C%5C%5C%5C%20%5Clim%5Climits%20_%7Bn%20%5Cto%20%2B%5Cinfty%7D%5Cdfrac%7B%7Cu_%7Bn%2B1%7D%7C%7D%7B%7Cu_%7Bn%7D%7C%7D%3D%5Clim%5Climits%20_%7Bn%20%5Cto%20%2B%5Cinfty%7D%5Cdfrac%7B%7Cx%7C%5E%7Bn%2B1%7D%7D%7B%28n%2B1%29%5Ccdot%203%5E%7Bn%7D%7D%5C%3B%20%3A%5C%3B%5Cdfrac%7B%7Cx%7C%5E%7Bn%7D%7D%7Bn%5Ccdot%203%5E%7Bn-1%7D%7D%3D%20%5Clim%5Climits%20_%7Bn%20%5Cto%20%2B%5Cinfty%7D%5C%2C%20%5Cdfrac%7B%7Cx%7C%7D%7B3%7D%3D%5Cdfrac%7B%7Cx%7C%7D%7B3%7D%3C1%5C%5C%5C%5C%5C%5C%7Cx%7C%3C3%5C%3B%20%5C%3B%20%5C%3B%20%5CRightarrow%20%5C%3B%20%5C%3B%20%5C%3B%20-3%3Cx%3C3)
![x=3:\; \; \sum \limits _{n=1}^{+\infty }\dfrac{3}{n}\; -\; rasxoditsya\; (garmonicheskij\; ryad)\\\\x=-3:\; \; \sum \limits _{n=1}^{+\infty }\dfrac{(-1)^{n}\cdot 3}{n}\; -\; sxoditsya\; \; yslovno x=3:\; \; \sum \limits _{n=1}^{+\infty }\dfrac{3}{n}\; -\; rasxoditsya\; (garmonicheskij\; ryad)\\\\x=-3:\; \; \sum \limits _{n=1}^{+\infty }\dfrac{(-1)^{n}\cdot 3}{n}\; -\; sxoditsya\; \; yslovno](https://tex.z-dn.net/?f=x%3D3%3A%5C%3B%20%5C%3B%20%5Csum%20%5Climits%20_%7Bn%3D1%7D%5E%7B%2B%5Cinfty%20%7D%5Cdfrac%7B3%7D%7Bn%7D%5C%3B%20-%5C%3B%20rasxoditsya%5C%3B%20%28garmonicheskij%5C%3B%20ryad%29%5C%5C%5C%5Cx%3D-3%3A%5C%3B%20%5C%3B%20%5Csum%20%5Climits%20_%7Bn%3D1%7D%5E%7B%2B%5Cinfty%20%7D%5Cdfrac%7B%28-1%29%5E%7Bn%7D%5Ccdot%203%7D%7Bn%7D%5C%3B%20-%5C%3B%20sxoditsya%5C%3B%20%5C%3B%20yslovno)