Найдите производную функции: y=x^4+ctgx

0 голосов
19 просмотров

Найдите производную функции: y=x^4+ctgx


Алгебра (12 баллов) | 19 просмотров
Дано ответов: 2
0 голосов

Ответ:(u*v) ' = u'*v+u*v'

f ' (x) = ((x-4) * ctg (x)) ' = (x-4) '*ctg (x) + (x-4) * ctg' (x) = W

(u/v) ' = (u'*v - u*v') / (v^2)

ctg' (x) = (cos (x) / sin (x)) ' = ((cos (x)) '*sin (x) - cos (x) * (sin (x)) ') / (sin^2 (x) =

= (-sin^2 (x) - cos^2 (x)) / (sin^2 (x)) = - 1 / (sin^2 (x)) .

W = ctg (x) + (x-4) * (-1/sin^2 (x)) = ctg (x) - ((x-4) / sin^2 (x)) .

Объяснение:

(22 баллов)
0 голосов

Ответ:(4x^3*sin^2⁡x-1)/sin^2⁡x

Объяснение:

y'= (x^4+ctgx)'=(x^4)'+(ctgx)'=4x^3-1/sin^2x=(4x^3*sin^2⁡x-1)/sin^2⁡x

(46 баллов)