Ответ:
Объяснение:
(\frac{1}{9})^{-x^2+8x};(\frac{1}{3})^{3(x^2+1)}>(\frac{1}{3})^{2(-x^2+8x)};\\0<\frac{1}{3}<1;\\3(x^2+1)<2(-x^2+8x);3x^2+3<-2x^2+16x;5x^2-16x+3<0;\\5x^2-16x+3=0; x_1=\frac{1}{5}; x_2=3" alt="(\frac{1}{27})^{x^2+1}>(\frac{1}{9})^{-x^2+8x};(\frac{1}{3})^{3(x^2+1)}>(\frac{1}{3})^{2(-x^2+8x)};\\0<\frac{1}{3}<1;\\3(x^2+1)<2(-x^2+8x);3x^2+3<-2x^2+16x;5x^2-16x+3<0;\\5x^2-16x+3=0; x_1=\frac{1}{5}; x_2=3" align="absmiddle" class="latex-formula">
__+___1/5___-___3___+___
x∈(1/5; 3)