Ответ:
((2x^2-1)/(x-8))>0
1)нарисуем числовую ось,
2) найдем, где числитель обращается в ноль
(2x^2-1)=0
x^2=1/2
х1=1/(корень из 2)
х2=-1/(корень из 2)
отметим эти точки на числовой оси
3)найдем, где знаменатель обращается в ноль
(x-8)=0
х3=8
отметим эту точку на числовой оси
4)у тебя есть интервалы
(- бескон, х1) ...(х1, х2)...(х2, х3)...(х3, + бескон)
в любом из них берем точку, например берем х=0
подставляем в неравенство
((2*0^2-1)/(0-8))>0 и смотрим- верно ли оно?
(-1)/(-8)>0-- верно.
значит во всем интервале (х1, х2) неравенство верно.
в остальных интервалах - можно через один менять знак
а можно в каждом интервале брать точку и проверять.
"метод интервалов" называется
(х1, х2)...(х3, + бескон) - эти нам нужны
(-1/(корень из 2), 1/(корень из 2)) объединить (8, +бесконечность)
Объяснение: