Центр окружности, вписанной в равнобедренный треугольник, делит его высоту ** отрезки...

0 голосов
115 просмотров

Центр окружности, вписанной в равнобедренный треугольник, делит его высоту на отрезки длиной 5 см и 3 см считая от вершины треугольника. Найдите периметр треугольника.


Геометрия (15 баллов) | 115 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Это задача для устного счета. Смотрите, как просто все. Центр вписанной окружности - это точка пересечения биссектрис, а в случае равнобедренного тр-ка - это точка, где биссектриса пересекает высоту. Высота равна 8, и делит равнобедренный треугольник на 2 равных прямоугольных треугольника, у которых гипотенуза (боковая сторона исходного тр-ка) относится к катету (половине основания исходного тр-ка), как 5/3 - по свойству биссектрисы.

Поэтому эти прямоугольные треугольники подобны треугольнику со сторонами 3,4,5, то есть "египетскому". Раз высота 8, то две другие стороны 6 и 10, то есть в равнобедренном треугольнике боковые стороны равны 10, а основание 6*2 = 12.

Периметр, само собой, 10 + 10 +12 = 32.

(69.9k баллов)