0 \\ log_{6} {}^{2} (x) = 1 \\ \left[ \begin{gathered} log_{6}(x) = 1 \\ log_{6}(x) = - 1 \end{gathered} \right. \\ \left[ \begin{gathered} log_{6}(x) = log_{6}(6) \\ log_{6}(x) = log_{6}( {6}^{ - 1} ) \end{gathered} \right. \\ \left[ \begin{gathered} x_{1} = 6 \\ x_{2} = \frac{1}{6} \end{gathered} \right." alt=" log_{6} {}^{2} (x) - 1 = 0, \: x > 0 \\ log_{6} {}^{2} (x) = 1 \\ \left[ \begin{gathered} log_{6}(x) = 1 \\ log_{6}(x) = - 1 \end{gathered} \right. \\ \left[ \begin{gathered} log_{6}(x) = log_{6}(6) \\ log_{6}(x) = log_{6}( {6}^{ - 1} ) \end{gathered} \right. \\ \left[ \begin{gathered} x_{1} = 6 \\ x_{2} = \frac{1}{6} \end{gathered} \right." align="absmiddle" class="latex-formula">
Ответ: 1/6; 6