а) Умножаем первое уравнение системы на -1
Получаем:

-8y=-8
y=1
Подставляем значение у и находим х
х+5*1=7
х=2
б) Умножаем второе уравнение системы на 2
Получаем:

13m=39
m=3
Подставляем значение m и находим n
5*3+n=15
n=0
в) Раскрываем скобки
Получаем:

Перенесем переменные влево и считаем
Получаем:

Умножаем второе уравнение системы на -1
Получаем:

21у=-42
у=-2
Подставляем значение у и находим х
4х-20=8
4х=28
х=7