→ Задача №5.
Рассмотрим все случаи неравенства треугольника. Всего 2 случая, НО только один из них верный. Докажем это.
Во-первых, вспомним, что сумма двух сторон треугольника должна быть больше третьей стороны.
Проверим это:
Возьмём случай, где основание нашего равнобедренного треугольника равно 72 см, а боковые стороны по 36 см, ибо они по правилу равны. Проверим, существует ли такой треугольник, следуя теореме (выделена выше наклонным курсивом).
72" alt="36+36>72" align="absmiddle" class="latex-formula">- это неверно;
72" alt="36+72>72" align="absmiddle" class="latex-formula"> - это верно;
72" alt="72+36>72" align="absmiddle" class="latex-formula"> - это верно.
Поскольку первый случай неверный, то такого треугольника не существует.
То есть боковые стороны нашего треугольника равны по 72 см.
(рисунок к задаче прикреплён ниже)
Ответ: 5).
→ Задача №6.
Гипотенуза - самая большая сторона в прямоугольном треугольнике, поэтому она не может равняться в данной задаче 11 см, поскольку это не самая большая цифра здесь. Получается подходит вариант 5) 11 см, т.к. гипотенуза всегда больше катета.
Ответ: 5).