Функция трёх переменных
задана в явном виде .
![u=x\sqrt{y}-y\, z^2\; \; ,\; \; M_1(2,1,-1)\; \; ,\; \; M_2(0,2,0)\\\\\vec {l}=\overline {M_1M_2}=(-2,1,1)\; \; ,\; \; |\vec{l}\, |=|\overline {M_1M_2}|=\sqrt{4+1+1}=\sqrt6\\\\cos\alpha =-\dfrac{2}{\sqrt6}\; ,\; \; cos\beta =\dfrac{1}{\sqrt6}\; ,\; \; cos\gamma =\dfrac{1}{\sqrt6}\\\\u'_{x}=\sqrt{y}\; \; ,\; \; u'_{y}=x\cdot \dfrac{1}{2\sqrt{y}}-z^2\; \; ,\; \; u'_z}=-2yz\\\\u'_{x}(M_1)=1\; \; ,\; \; u'_{y}(M_1)=1-1=0\; \; ,\; \; u'_{z}(M_1)=2\\\\\overline {grad\, u(x,y)}=(u'_{x}\, ;\, u'_{y}\, ;\, u'_{z}) u=x\sqrt{y}-y\, z^2\; \; ,\; \; M_1(2,1,-1)\; \; ,\; \; M_2(0,2,0)\\\\\vec {l}=\overline {M_1M_2}=(-2,1,1)\; \; ,\; \; |\vec{l}\, |=|\overline {M_1M_2}|=\sqrt{4+1+1}=\sqrt6\\\\cos\alpha =-\dfrac{2}{\sqrt6}\; ,\; \; cos\beta =\dfrac{1}{\sqrt6}\; ,\; \; cos\gamma =\dfrac{1}{\sqrt6}\\\\u'_{x}=\sqrt{y}\; \; ,\; \; u'_{y}=x\cdot \dfrac{1}{2\sqrt{y}}-z^2\; \; ,\; \; u'_z}=-2yz\\\\u'_{x}(M_1)=1\; \; ,\; \; u'_{y}(M_1)=1-1=0\; \; ,\; \; u'_{z}(M_1)=2\\\\\overline {grad\, u(x,y)}=(u'_{x}\, ;\, u'_{y}\, ;\, u'_{z})](https://tex.z-dn.net/?f=u%3Dx%5Csqrt%7By%7D-y%5C%2C%20z%5E2%5C%3B%20%5C%3B%20%2C%5C%3B%20%5C%3B%20M_1%282%2C1%2C-1%29%5C%3B%20%5C%3B%20%2C%5C%3B%20%5C%3B%20M_2%280%2C2%2C0%29%5C%5C%5C%5C%5Cvec%20%7Bl%7D%3D%5Coverline%20%7BM_1M_2%7D%3D%28-2%2C1%2C1%29%5C%3B%20%5C%3B%20%2C%5C%3B%20%5C%3B%20%7C%5Cvec%7Bl%7D%5C%2C%20%7C%3D%7C%5Coverline%20%7BM_1M_2%7D%7C%3D%5Csqrt%7B4%2B1%2B1%7D%3D%5Csqrt6%5C%5C%5C%5Ccos%5Calpha%20%3D-%5Cdfrac%7B2%7D%7B%5Csqrt6%7D%5C%3B%20%2C%5C%3B%20%5C%3B%20cos%5Cbeta%20%3D%5Cdfrac%7B1%7D%7B%5Csqrt6%7D%5C%3B%20%2C%5C%3B%20%5C%3B%20cos%5Cgamma%20%3D%5Cdfrac%7B1%7D%7B%5Csqrt6%7D%5C%5C%5C%5Cu%27_%7Bx%7D%3D%5Csqrt%7By%7D%5C%3B%20%5C%3B%20%2C%5C%3B%20%5C%3B%20u%27_%7By%7D%3Dx%5Ccdot%20%5Cdfrac%7B1%7D%7B2%5Csqrt%7By%7D%7D-z%5E2%5C%3B%20%5C%3B%20%2C%5C%3B%20%5C%3B%20u%27_z%7D%3D-2yz%5C%5C%5C%5Cu%27_%7Bx%7D%28M_1%29%3D1%5C%3B%20%5C%3B%20%2C%5C%3B%20%5C%3B%20u%27_%7By%7D%28M_1%29%3D1-1%3D0%5C%3B%20%5C%3B%20%2C%5C%3B%20%5C%3B%20u%27_%7Bz%7D%28M_1%29%3D2%5C%5C%5C%5C%5Coverline%20%7Bgrad%5C%2C%20u%28x%2Cy%29%7D%3D%28u%27_%7Bx%7D%5C%2C%20%3B%5C%2C%20u%27_%7By%7D%5C%2C%20%3B%5C%2C%20u%27_%7Bz%7D%29)
Направление наибольшего возрастания функции в точке М1 совпадает с направлением градиента функции в этой точке. А наибольшая скорость возрастания функции в данной точке совпадает с модулем градиента в этой точке.
![\overline {grad\, u(x,y)}\Big|_{M_1}=\Big(\, 1;0;2\Big)\; \; ,\; \; \Big|\overline {grad\, u(x,y)}\Big|_{M_1}=\sqrt{1+0+4}=\sqrt5 \overline {grad\, u(x,y)}\Big|_{M_1}=\Big(\, 1;0;2\Big)\; \; ,\; \; \Big|\overline {grad\, u(x,y)}\Big|_{M_1}=\sqrt{1+0+4}=\sqrt5](https://tex.z-dn.net/?f=%5Coverline%20%7Bgrad%5C%2C%20u%28x%2Cy%29%7D%5CBig%7C_%7BM_1%7D%3D%5CBig%28%5C%2C%201%3B0%3B2%5CBig%29%5C%3B%20%5C%3B%20%2C%5C%3B%20%5C%3B%20%5CBig%7C%5Coverline%20%7Bgrad%5C%2C%20u%28x%2Cy%29%7D%5CBig%7C_%7BM_1%7D%3D%5Csqrt%7B1%2B0%2B4%7D%3D%5Csqrt5)
Производная по направлению вектора ![\vec {l}\; : \vec {l}\; :](https://tex.z-dn.net/?f=%5Cvec%20%7Bl%7D%5C%3B%20%3A)
![\dfrac{\partial\, u}{\partial \vec{l}}\Big|_{M_1}=1\cdot (-\frac{2}{\sqrt6})+0\cdot \dfrac{1}{6}+2\cdot \dfrac{1}{\sqrt6}=0 \dfrac{\partial\, u}{\partial \vec{l}}\Big|_{M_1}=1\cdot (-\frac{2}{\sqrt6})+0\cdot \dfrac{1}{6}+2\cdot \dfrac{1}{\sqrt6}=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%5C%2C%20u%7D%7B%5Cpartial%20%5Cvec%7Bl%7D%7D%5CBig%7C_%7BM_1%7D%3D1%5Ccdot%20%28-%5Cfrac%7B2%7D%7B%5Csqrt6%7D%29%2B0%5Ccdot%20%5Cdfrac%7B1%7D%7B6%7D%2B2%5Ccdot%20%5Cdfrac%7B1%7D%7B%5Csqrt6%7D%3D0)