t^2 = 1 + x^{-\frac{1}{2}} => x^{-\frac{1}{2}} = t^2-1 => x^{-1} = (t^2-1)^2 => x = (t^2-1)^{-2} => dx = -2(t^2-1)^{-3}*2tdt = -4t(t^2-1)^{-3}dt\\" alt="\int \frac{\sqrt{1+\sqrt{x}}}{x\sqrt[4]{x^3} } dx = \int ((1+x^{\frac{1}{2}})^\frac{1}{2}*x^{-\frac{7}{4}})dx = \int (x^{-\frac{7}{4}}*(x^{\frac{1}{2}}+1)^\frac{1}{2})dx; \\|m=-\frac{7}{4}\\| a = 1\\|n = \frac{1}{2}\\ |b = 1\\|p=\frac{1}{2}\\\frac{m+1}{n} + p = -1 \in Z => t^2 = 1 + x^{-\frac{1}{2}} => x^{-\frac{1}{2}} = t^2-1 => x^{-1} = (t^2-1)^2 => x = (t^2-1)^{-2} => dx = -2(t^2-1)^{-3}*2tdt = -4t(t^2-1)^{-3}dt\\" align="absmiddle" class="latex-formula">