0\\\\1+tg^2a=\dfrac{1}{cos^2a}\; \; \to \; \; \; 1+tg^2a=\dfrac{1}{1/25}=25\; ,\; \; tg^2a=24\\\\tga=\sqrt{24}=2\sqrt6>0\\\\\\5a)\; \; cos105+cos75=2\cdot cos90\cdot cos15=0\\\\b)\; \; sin\dfrac{11}{12}\pi +sin\dfrac{5}{12}\pi =2\cdot sin\dfrac{4\pi }{3}\cdot cos\dfrac{\pi}{4}=2\cdot (-\dfrac{\sqrt3}{2})\cdot \dfrac{\sqrt2}{2}=-\dfrac{\sqrt6}{2}" alt="4)\; \; cosa=-\dfrac{1}{5}\; \; ,\; \; a\in (180^\circ ;270^\circ )\; \; \Rightarrow \; \; tga>0\\\\1+tg^2a=\dfrac{1}{cos^2a}\; \; \to \; \; \; 1+tg^2a=\dfrac{1}{1/25}=25\; ,\; \; tg^2a=24\\\\tga=\sqrt{24}=2\sqrt6>0\\\\\\5a)\; \; cos105+cos75=2\cdot cos90\cdot cos15=0\\\\b)\; \; sin\dfrac{11}{12}\pi +sin\dfrac{5}{12}\pi =2\cdot sin\dfrac{4\pi }{3}\cdot cos\dfrac{\pi}{4}=2\cdot (-\dfrac{\sqrt3}{2})\cdot \dfrac{\sqrt2}{2}=-\dfrac{\sqrt6}{2}" align="absmiddle" class="latex-formula">