Ответ:
![x\in\left(\dfrac{\pi}{2}+2n\pi;\; \pi+2n\pi\right),\; n\in\mathbb{Z} x\in\left(\dfrac{\pi}{2}+2n\pi;\; \pi+2n\pi\right),\; n\in\mathbb{Z}](https://tex.z-dn.net/?f=x%5Cin%5Cleft%28%5Cdfrac%7B%5Cpi%7D%7B2%7D%2B2n%5Cpi%3B%5C%3B%20%5Cpi%2B2n%5Cpi%5Cright%29%2C%5C%3B%20n%5Cin%5Cmathbb%7BZ%7D)
Пошаговое объяснение:
1" alt="\sin x-\cos x>1" align="absmiddle" class="latex-formula">
Рассмотрим выражение слева от знака неравенства.
![\sin x-\cos x=\sqrt{2}(\sin x\cos\dfrac{\pi}{4}-\sin\dfrac{\pi}{4}\cos x)=\sqrt{2}\sin\left(x-\dfrac{\pi}{4} \right) \sin x-\cos x=\sqrt{2}(\sin x\cos\dfrac{\pi}{4}-\sin\dfrac{\pi}{4}\cos x)=\sqrt{2}\sin\left(x-\dfrac{\pi}{4} \right)](https://tex.z-dn.net/?f=%5Csin%20x-%5Ccos%20x%3D%5Csqrt%7B2%7D%28%5Csin%20x%5Ccos%5Cdfrac%7B%5Cpi%7D%7B4%7D-%5Csin%5Cdfrac%7B%5Cpi%7D%7B4%7D%5Ccos%20x%29%3D%5Csqrt%7B2%7D%5Csin%5Cleft%28x-%5Cdfrac%7B%5Cpi%7D%7B4%7D%20%5Cright%29)
Продолжим решение:
1\\\sin\left(x-\dfrac{\pi}{4} \right)>\dfrac{1}{\sqrt{2}}" alt="\sqrt{2}\sin\left(x-\dfrac{\pi}{4} \right)>1\\\sin\left(x-\dfrac{\pi}{4} \right)>\dfrac{1}{\sqrt{2}}" align="absmiddle" class="latex-formula">
Решить это неравенство не составляет труда:
![\dfrac{\pi}{4}+2n\pi<x-\dfrac{\pi}{4}<\dfrac{3\pi}{4}+2n\pi,\; n\in\mathbb{Z}\\\dfrac{\pi}{2}+2n\pi<x<\pi+2n\pi,\; n\in\mathbb{Z}\\x\in\left(\dfrac{\pi}{2}+2n\pi;\; \pi+2n\pi\right),\; n\in\mathbb{Z} \dfrac{\pi}{4}+2n\pi<x-\dfrac{\pi}{4}<\dfrac{3\pi}{4}+2n\pi,\; n\in\mathbb{Z}\\\dfrac{\pi}{2}+2n\pi<x<\pi+2n\pi,\; n\in\mathbb{Z}\\x\in\left(\dfrac{\pi}{2}+2n\pi;\; \pi+2n\pi\right),\; n\in\mathbb{Z}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpi%7D%7B4%7D%2B2n%5Cpi%3Cx-%5Cdfrac%7B%5Cpi%7D%7B4%7D%3C%5Cdfrac%7B3%5Cpi%7D%7B4%7D%2B2n%5Cpi%2C%5C%3B%20n%5Cin%5Cmathbb%7BZ%7D%5C%5C%5Cdfrac%7B%5Cpi%7D%7B2%7D%2B2n%5Cpi%3Cx%3C%5Cpi%2B2n%5Cpi%2C%5C%3B%20n%5Cin%5Cmathbb%7BZ%7D%5C%5Cx%5Cin%5Cleft%28%5Cdfrac%7B%5Cpi%7D%7B2%7D%2B2n%5Cpi%3B%5C%3B%20%5Cpi%2B2n%5Cpi%5Cright%29%2C%5C%3B%20n%5Cin%5Cmathbb%7BZ%7D)