0\\(x-5)(x+5)\leq 0\end{array}\right\; \; \left\{\begin{array}{l}(x-3)(x+2)>0\\(x-5)(x+5)\leq 0\end{array}\right\; \; \left\{\begin{array}{l}x\in (-\infty ;-2)\cup (\, 3;+\infty )\\x\in [-5\, ;\, 5\, ]\end{array}\right\\\\\\\underline {\; x\in [-5\, ;\, -2\, )\cup (\, 3\, ;\, 5\, ]\; }" alt="\left\{\begin{array}{l}x^2-x+6>0\\(x-5)(x+5)\leq 0\end{array}\right\; \; \left\{\begin{array}{l}(x-3)(x+2)>0\\(x-5)(x+5)\leq 0\end{array}\right\; \; \left\{\begin{array}{l}x\in (-\infty ;-2)\cup (\, 3;+\infty )\\x\in [-5\, ;\, 5\, ]\end{array}\right\\\\\\\underline {\; x\in [-5\, ;\, -2\, )\cup (\, 3\, ;\, 5\, ]\; }" align="absmiddle" class="latex-formula">