кружность вписанная в треугольник DEF касается стороны DF в точке А такой, что АD-АF=14...

0 голосов
85 просмотров

кружность вписанная в треугольник DEF касается стороны DF в точке А такой, что АD-АF=14 см. Вершина Е удалена от точки касания вписанной окружности со стороной EF на 4 см. Найдите стороны треугольника, если его периметр 60 см.


Геометрия (14 баллов) | 85 просмотров
Дан 1 ответ
0 голосов

Ответ:

Обозначим треугольник DEF (DE = EF). Пусть C — точка касания с основанием.

Длиной боковой стороны может быть только 8 (иначе не будет выполняться неравенство треугольника) . Основание, значит, 4.

Поскольку C — середина DF, а касательные к окружности, проведённые из одной точки, равны, имеем:

AD = DC = CF = FB = 4/2 = 2.

Значит, AE = BE = 8 − 2 = 6. Треугольники AEB и DEF подобны с коэффициентом подобия AE/DE = 6/8 = 3/4. Поэтому AB = 3/4·DF = 3.

(315 баллов)