В треугольнике ABC медианы пересекаются в точке O. Докажите что площади треугольников AOB...

0 голосов
59 просмотров

В треугольнике ABC медианы пересекаются в точке O. Докажите что площади треугольников AOB и CОА равны.


Алгебра (57.1k баллов) | 59 просмотров
Дан 1 ответ
0 голосов

Доказательство:  Рассмотрим треуг.ABC. Проведем медианы из всех вершин, которые пересекаются в точке O. Получим треугольники треуг.AOB, треуг.BOC, треуг.AOC. Пусть их площади равны соответственно  S1,  S2,  S3. А площадь  треуг.ABC равна  S. Рассмотрим треуг.ABK и  треуг.CBK, они равной площади, т.к.  BK медиана. В треугольнике треуг.AOC  OK - медиана, значит площади треугольников AOKи COK  равны. Отсюда следует, что S1 = S2. Аналогично можно доказать, что

S2 = S3 и S3 = S1 .

смотри файл вложен правда медианы не ровные



image
(6.7k баллов)