Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г, решили...

0 голосов
281 просмотров

Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы А использовали кодовое слово 0, для буквы Б – кодовое слово 110. Какова наименьшая возможная суммарная длина всех четырёх кодовых слов? 1) 7 2) 8 3) 9 4) 10


Информатика (46 баллов) | 281 просмотров
Дан 1 ответ
0 голосов

Ответ: 3

Объяснение:

Тот факт, что код удовлетворяет условию Фано, означает, что ни одно кодовое слово не является началом другого (например, т.к. для кодирования буквы А используется цифра 0, то никакое другое кодовое слово не может начинаться с нуля, ведь тогда кодовое слово для А будет началом другого кодового слова).

Итак, кодовые слова для букв Б, В и Г не могут начинаться с нуля. Так как код двоичный, все они начинаются с единицы. Наша задача — найти три последовательности, которые начинаются с единицы и при этом имеют наименьшее возможное число символов (цифр).

Закодировать какую-либо букву одним символом, единицей, мы не можем, потому что в этом случае уже не удастся закодировать другие буквы (из-за условия Фано; к тому же, буква, закодированная одной единицей, была бы началом кодового слова для Б (110), что опять не удовлетворяет условию Фано).

Если использовать кодовые слова длиной в 2 символа, получится закодировать только две буквы, ведь таких кодовых слова всего два: 11 и 10. Составить третье кодовое слово не позволит условие Фано.

Если используем кодовые слова длиной в 3 символа, сможем закодировать все буквы, например, присвоить букве Г кодовое слово 111, а букве Б, как и сказано в условии, кодовое слово 110, и тогда свободные слова ещё останутся. Но в этом случае остаётся ещё одно кодовое слово из двух символов, не являющееся началом другого, — 10 (т.к. А = 0, Б = 110, Г = 111). Присвоим это кодовое слово оставшейся букве В.

Итак, присвоить всем трём буквам (кроме А) кодовые слова длиной 2 символа невозможно, а если все три кодовых слова будут длиной в 3 символа, то их последовательность не будет иметь наименьшее число символов (как нужно в задании), поэтому вариант, когда одна буква закодирована двумя символами, а две оставшиеся — тремя, даёт при сложении числа символов последовательность наименьшей длины.

Получается, что длины кодовых слов букв:

А — 1 символ (0)

Б — 3 символа (110)

В — 2 символа (10)

Г — 3 символа (111)

При кодировании последовательности из этих букв (например, АБВГ, порядок в данном случае не важен) каждая буква заменяется её кодовым словом.

Значит, число символов в последовательности равно общему количеству символов во всех четырёх кодовых словах и составляет

1 + 3 + 2 + 3 = 9 (символов).

Ответ: 3

(961 баллов)