Дано:
h=8 см.
а=120'
b=30'
Найти: а) S_1
б) S_2
Решение:
Рассмотрим отдельно осевое сечение - это равнобедренный треугольник с основанием, равным диаметру окружности в основании конуса. Высота, опущенная к основанию треугольника, равна высоте конуса, она разбивает этот треугольник на 2 равных прямоугольных треугольника, у которых гипотенуза равна образующей - L, один из катетов равен радиусу окружности - r, другой катет - высоте h.
Для простоты назовём осевое сечение треуг. ABC, а высоту - AO. Т.к. треуг. ABC - равнобедренный с основанием BC(BC=d), то AO - высота, медиана и биссектриса.
Значит угол cos60' = AO/AB - - - AB=AO/cos60'=8/0.5=16см.
S_1=0,5L*L*sinb (Т.к. сечение - треугольник, вычисляется по формуле - половина произведения 2-х сторон на синус угла между ними),
S_1=0.5*16*16*sin30' = 16*16*0.5*0.5=64см^2.
sinS_2=πrl=16*8√3*π=128π√3см^2.