Відповідь:
х=15
Покрокове пояснення:
![\frac{10}{x^{2} -100} +\frac{x-20}{x^{2} +10x} -\frac{5}{x^{2} -10x} =0\\\frac{10}{(x-10)(x+10)} +\frac{x-20}{x(x +10)} -\frac{5}{x(x -10)} =0\\\frac{10x}{x(x-10)(x+10)} +\frac{(x-20)(x-10)}{x(x-10)(x +10)} -\frac{5(x+10)}{x(x -10)(x+10)} =0 \frac{10}{x^{2} -100} +\frac{x-20}{x^{2} +10x} -\frac{5}{x^{2} -10x} =0\\\frac{10}{(x-10)(x+10)} +\frac{x-20}{x(x +10)} -\frac{5}{x(x -10)} =0\\\frac{10x}{x(x-10)(x+10)} +\frac{(x-20)(x-10)}{x(x-10)(x +10)} -\frac{5(x+10)}{x(x -10)(x+10)} =0](https://tex.z-dn.net/?f=%5Cfrac%7B10%7D%7Bx%5E%7B2%7D%20-100%7D%20%2B%5Cfrac%7Bx-20%7D%7Bx%5E%7B2%7D%20%2B10x%7D%20-%5Cfrac%7B5%7D%7Bx%5E%7B2%7D%20-10x%7D%20%3D0%5C%5C%5Cfrac%7B10%7D%7B%28x-10%29%28x%2B10%29%7D%20%2B%5Cfrac%7Bx-20%7D%7Bx%28x%20%2B10%29%7D%20-%5Cfrac%7B5%7D%7Bx%28x%20-10%29%7D%20%3D0%5C%5C%5Cfrac%7B10x%7D%7Bx%28x-10%29%28x%2B10%29%7D%20%2B%5Cfrac%7B%28x-20%29%28x-10%29%7D%7Bx%28x-10%29%28x%20%2B10%29%7D%20-%5Cfrac%7B5%28x%2B10%29%7D%7Bx%28x%20-10%29%28x%2B10%29%7D%20%3D0)
ОДЗ:
![x+10\neq 0\\x\neq 0-10\\x\neq -10 x+10\neq 0\\x\neq 0-10\\x\neq -10](https://tex.z-dn.net/?f=x%2B10%5Cneq%200%5C%5Cx%5Cneq%200-10%5C%5Cx%5Cneq%20-10)
0\\x1=\frac{-b+\sqrt{D} }{2a} =\frac{-(-25)+\sqrt{25} }{2*1} =\frac{25+5 }{2} =\frac{30}{2} =15\\x2=\frac{-b-\sqrt{D} }{2a} =\frac{-(-25)-\sqrt{25} }{2*1} =\frac{25-5 }{2} =\frac{20}{2} =10" alt="10x+(x-20)(x-10)-5(x+10)=0\\10x+x^{2} -10x-20x+200-5x-50=0\\x^{2} -25x+150=0\\a=1\\b=-25\\c=150\\D=b^{2} -4ac=(-25)^{2} -4*1*150=625-600=25>0\\x1=\frac{-b+\sqrt{D} }{2a} =\frac{-(-25)+\sqrt{25} }{2*1} =\frac{25+5 }{2} =\frac{30}{2} =15\\x2=\frac{-b-\sqrt{D} }{2a} =\frac{-(-25)-\sqrt{25} }{2*1} =\frac{25-5 }{2} =\frac{20}{2} =10" align="absmiddle" class="latex-formula">
10 - не задовільняє ОДЗ
х=15 - корінь(розв'язок)