2. АС=AD*cosα=а*cosα
AB=AC*sinβ=а*cosα*sinβ
1 Диагонали ромба в точке пересечения делятся пополам, пересекаются под прямым углом и делят ромб на 4 равных прямоугольных треугольника, половина меньшей диагонали равна 5 см и она лежит в прямоугольном треугольнике против угла в 30 градусов, потому что острый угол, против которого лежит меньшая диагональ равна 180°-120°=60°, а диагональ ромба является биссектрисой его внутреннего угла, значит, делит угол в 60° пополам. значит, сторона ромба в два раза больше, чем половина меньшей диагонали. Половину большей диагонали найдем по теореме Пифагора
√(100-25)=√75=5√3/см/