основание равнобокой трапеции равно 8 и 18,найти радиус вписанной окружности в трапцию

0 голосов
37 просмотров

основание равнобокой трапеции равно 8 и 18,найти радиус вписанной окружности в трапцию


Геометрия (15 баллов) | 37 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Радиус вписанной окружности равен половине высоты этой трапеции (высота равна диаметру. )

В трапецию можно вписать окружность, если суммы ее противоположных сторон равны.

8+18=26 - сумма боковых сторон

26:2=13 - боковая сторона.

Опустим из тупого угла высоту на большее основание.

Получим прямоугольный треугольник с гипотенузой 13, катетом, равным  полуразности оснований и равным (18-8):2, и вторым катетом - высотой трапеции.

По теореме Пифагора диаметр окружности равен

√(13²-5²)=12см

Радиус равен половине диаметра 

12:2=6 см

Ответ: радиус вписанной окружности в трапцию равен 6 см

 

(228k баллов)