0\\\\Sin2\alpha=\sqrt{1-Cos^{2}2\alpha}=\sqrt{1-(\frac{1}{3})^{2}}=\sqrt{1-\frac{1}{9}}=\sqrt{\frac{8}{9}}=\frac{2\sqrt{2}}{3}\\\\\frac{2Cos2\alpha}{Sin2\alpha}=\frac{2*\frac{1}{3}}{\frac{2\sqrt{2}}{3}} =\frac{2*3}{3*2\sqrt{2}}=" alt="\frac{Cos^{2}\alpha-Sin^{2}\alpha}{Sin\alpha Cos\alpha}=\frac{Cos2\alpha}{Sin\alpha Cos\alpha}=\frac{2*Cos2\alpha}{2*Sin\alpha Cos\alpha}=\frac{2Cos2\alpha}{Sin2\alpha}\\\\\alpha\in(0;\frac{\pi }{2} )\Rightarrow 2\alpha\in(0;\pi)\Rightarrow Sin2\alpha>0\\\\Sin2\alpha=\sqrt{1-Cos^{2}2\alpha}=\sqrt{1-(\frac{1}{3})^{2}}=\sqrt{1-\frac{1}{9}}=\sqrt{\frac{8}{9}}=\frac{2\sqrt{2}}{3}\\\\\frac{2Cos2\alpha}{Sin2\alpha}=\frac{2*\frac{1}{3}}{\frac{2\sqrt{2}}{3}} =\frac{2*3}{3*2\sqrt{2}}=" align="absmiddle" class="latex-formula">