Ответ:
Объяснение:
Два перпендикулярных отрезка KM и LN пересекаются в общей серединной точке P.
Какой величины∡ N и ∡ K, если ∡ L = 43° и ∡ M = 47°?
1. Отрезки делятся пополам, значит, KP =
РМ РN = LP,
∡
NPK= ∡ MPL, так как прямые перпендикулярны и оба угла равны 90°.
По первому признаку равенства треугольник KPN равен треугольнику MPL.
2. В равных треугольниках соответствующие углы равны.
В этих треугольниках соответствующие ∡
∡
K и ∡ M,
∡
N и ∡ L.
∡ K = 47°;
∡ N = 43°.