0\\x^2\geq 36\end{array}\right\; \; \left\{\begin{array}{lll}(x+5)9x-3)>0\\(x-6)(x+6)\geq 0\end{array}\right\; \; \left\{\begin{array}{lll}x\in (-\infty ;-5)\cup (3;+\infty )\\x\in (-\infty ;-6\, ]\cup [\, 6;+\infty )\end{array}\right\\\\\\x\in (-\infty ;-6\, ]\cup [\, 6;+\infty )\; \; -\; otvet" alt="1)\; \; \left\{\begin{array}{lll}x^2+2x-15>0\\x^2\geq 36\end{array}\right\; \; \left\{\begin{array}{lll}(x+5)9x-3)>0\\(x-6)(x+6)\geq 0\end{array}\right\; \; \left\{\begin{array}{lll}x\in (-\infty ;-5)\cup (3;+\infty )\\x\in (-\infty ;-6\, ]\cup [\, 6;+\infty )\end{array}\right\\\\\\x\in (-\infty ;-6\, ]\cup [\, 6;+\infty )\; \; -\; otvet" align="absmiddle" class="latex-formula">
![2)\; \; \left\{\begin{array}{lll}\dfrac{x-6}{x+10}\geq 0\\x-6\geq 0\end{array}\right\; \; \left\{\begin{array}{lll}x\in (-\infty ;-10)\cup [\, 6;+\infty )\\x\in [\, 6;+\infty )\end{array}\right\; \; \; \; \Rightarrow \; \; x\in [\, 6;+\infty ) 2)\; \; \left\{\begin{array}{lll}\dfrac{x-6}{x+10}\geq 0\\x-6\geq 0\end{array}\right\; \; \left\{\begin{array}{lll}x\in (-\infty ;-10)\cup [\, 6;+\infty )\\x\in [\, 6;+\infty )\end{array}\right\; \; \; \; \Rightarrow \; \; x\in [\, 6;+\infty )](https://tex.z-dn.net/?f=2%29%5C%3B%20%5C%3B%20%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Blll%7D%5Cdfrac%7Bx-6%7D%7Bx%2B10%7D%5Cgeq%200%5C%5Cx-6%5Cgeq%200%5Cend%7Barray%7D%5Cright%5C%3B%20%5C%3B%20%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Blll%7Dx%5Cin%20%28-%5Cinfty%20%3B-10%29%5Ccup%20%5B%5C%2C%206%3B%2B%5Cinfty%20%29%5C%5Cx%5Cin%20%5B%5C%2C%206%3B%2B%5Cinfty%20%29%5Cend%7Barray%7D%5Cright%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5CRightarrow%20%5C%3B%20%5C%3B%20%20x%5Cin%20%5B%5C%2C%206%3B%2B%5Cinfty%20%29)
0\\x^2-2x-80\\(x-4)(x+2)" alt="3)\; \; \left\{\begin{array}{l}x^2+4x-5>0\\x^2-2x-80\\(x-4)(x+2)" align="absmiddle" class="latex-formula">