Хотя бы частично .
1. y = -x² +2x +3 _____________
y(0) =3 A (0 ;3) _точка пересечения с осью ординат
! x₁ = - 1 корень уравнения - x² +2x +3 = 0 || - (x² -2x -3) =0
x₁ *x₂ = -3 ; x₂ = -3/(-1) = 3 [ x₁ = -1 ; x₂ = 3 нули функции ]
y = - x² +2x +3 = - (x - 1)² + 4 График парабола с вершиной в точке
В( 1 ; 4) , ветви параболы направлены вниз (коэффициент a = -1 )
- - - - -
1. y > 0 ,если x ∈ ( -1 ; 3) ;
2. функция убывает , если x ∈ [ 1 ; ∞ )
3. max y = 4 .
=========================================
4. Найти ООФ y = √(x -x²) +1 /√(x² -5x +6)
- - -
{ x -x² ≥ 0 ; { x(x - 1) ≤0 ; { x∈ [ 0 ; 1] ;
{ x² - 5 x +6 >0 . { (x-2)(x-3) >0 .. { x ∈ ( -∞ ; 2) ∪(3 ; ∞) .
x∈ [ 0 ; 1] .
=========================================
5.Найти значения коэффициентов a , b , c , если точка B(1;1) является вершиной параболы y =ax²+bx +c , которая пересекет ось ординат в точке A(0 ;3) .
========================
3 ==a*0²+b*0 +c ; c = 3 ;
{x₀ = -b/2a ; { - b/2a = x₀ ; { - b/2a = 1 ; { b = -2a ;
y{₀ = -(b² -4ac) /4a . { c - b²/4a = y₀ . { 3 -b²/4a = 1 . { 3 -(-2a)²/4a =1.
- - -
{ b = -2a ; { b = - 4
3 -a = 1 ; { a = 2
y =2x² - 4x + 3 [ y =2(x -1 )² + 1 ]